This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

KINGSBURY,
attorncy.
BUNGAT.

$$
\text { Novelat } f
$$

$0 /$

Effigies Restereñ' admoum veri Cohannis Iferlkins nuper Epifcopi Geftrienis.

Matbematical Magick: OR, THE WONDERS That may be Performed by Mechanical Geometry.

 Tn Cmo 2Books. ConiCONCERNINGMechanical $\{$ Powers. $\{$ Motions.

Being one of the moft Eafie, Pleafant, Uleful, (and yet moft neglected) part of MATHEMATICKS.
Not before treated of in this Language. By 7. Wilkins, late $\mathrm{L}^{\mathrm{d}} \mathrm{B}^{\mathrm{p}}$ of Chefter.

The fourth \mathbb{C} dition.

LONDON:
Printed for 1Ric. Whaldmint, near the Oxford-Arms lnn, Warpick-Lane。 1691.

To His Highness the Prince Elector 1 palatine.

May it pleafe Your Highness!
Should not thus have prefented my
Diverfions, where I owe my fury and bufinefs; but that where all is due, a man may not juflly withbold any part.

This following $D i f$ course was composed fore years since at my spare hours in the University, 'The Subject of it ' is mixed Mathematicks; which Idid the rather at Such times make aboice of, as being for the pleafure of it, more proper for recreasion; and for the facility, more fuit able to my abilities and leifure.

Ifoould not, Sir, have been ambitious of any f_{0} Great (I could not of any Better) Patronage, had not my relation both engaged and emboldened me to this Dedication. -

They that know your Highne $\int s$, howe great an encourager you are, and bow able A 3 4 Fudge

The Epiftle.
afudge in all kind of ingenious Arts and Literature, muft needs acknowledg your preffures and low condition to be none of the leaft mifchiefs (amongft thofe many other) sinder which the Commonwealth of Learning does now fuffer.

It would in many re/pects much conduce to the general advancement of religion and learning, if the reformed Churches, in wobofe caufe and defence your fainily hath fo deeply Suffered, were but effectuallymindful of their engagements to it. And particularly, if thefe prefent unhappy differences of this Nation did not occalion too much forgetfulnefs of their formser zeal and profeffions for the vindicating of your family, and the reftoring of your Higbnefs; the baftning and accomplifbment of which, together with the increafe of all heavenly bleffings upon your Highme $/ s$, Jball be the hearty daily prayer of

Your Highnefs
Moft humble and moft devoted Servant and Chaplain, YOHMWIIKINS.

TOTHE
 R E A D ER.

IT is related of Heraclitus, that when his Scholars had found him in a Tradefman's Shop, whither they were afhamed to enter, He told them, Quod neque tali loco dii defupt immortales, that the gods were as well converfant in fuch places as in others; intimating that a divine power and wifdome might be difcerned even in thofe common Arts, which are fo much defpifed, And though the manual exercile and practife of them be efteemed ignoble, yet the ftudy of their general caufes and principles cannot be prejudicial to any other (tho the moft facred) profeffion.

It hath been my ufual cuftom in the courfe of my other ftudies, to propofe divers Mathematical or PhilofoA 4 phical

To the Reader.

phical inquiries, for the recreation of my leifure-hours; and as I could gather fatisfaction, to compofe. them to fome form and method,

Some of thefe have been formerly publifhed, and I have now ventured forth this difcourfe; wherein befides the great delight and pleafure (which every rational Reader mult needs find in fuch notions as carry with them theirown evidenoe and demonftration) there is alfo much real benefit to be learned; particularly for fuch Gentlemen as employ their eftates in thofe chargeable adventures of Drawing, Mines, Cole-pits, orr. who may fromi hence learn the chief grounds and nature of Engines, and thereby more cafily avoid the delufions of any cheating Impoftor: And alfo for fuch common Artifcers, as are well skilled in the practife of thefe Arts, who may be much advantaged by the right underftanding of their grounds and Theory.

Ramus hath obferved, that the reafon why Germany hath been fo eminent

To the Reader.

nentfor Mechanical imventions, is becaufe there have been publick Lettures of this kiod inftituted amonglt them, and thofe not only in the learned languages, but alfo in the vulgar tongue, for the capacity of every unletterd ingenious Artificer.

This whole Difcourfe I call ginathematical gityanict, becaufe the art of fuch Mechanical inventions as are here chiefly infifted upon, hath been formerly fo ftyled; and in allufion to vul-

Agrippons
De Vawit.
Scient. c.
42. gat opinion, which doth commonly attribute all fuch ftrange operations unto the power of Magick; For which reafon the Ancients did name this Art Oavmatoтоиткn, or Mirandorum EffeCtrix.

The firlt book is called Archimedes, becaufe he was the chiefeft in difcovering of Mechanical powers.

The fecond is ftyled by the name of Dedalus, who is related to be one of the firft and moit fainous amongft the Ancients for his skill in making Automata, or felf-moving Engines: both thefe being two of the firt Authors
that

To the Reader.

that did reduce Mathematical principles unto Mechanical experiments. Other difcourles of this kind, are for the moft part large and voluminous, of great price and hardly gotten; and befides, there are not any of them (that I know of) in our vulgar tongue, for which thefe Mechanical Arts of all other are moft proper. Thefe inconveniencies are here in fome meafure remedied, together with the addition (if I miftake not) of divers things -very confiderable, and not infifted upon by others.

THE

The Contents and Methöd of this fọllowing Dif̣courre.

Cha firft 2500 F.

Chap. 1. $T H E$ excellency of thefe Arts. W'hy they were concealed by the Ancients. The Awthors that have treated of them.

Ch. 2. Concerning the name of this Art. That it may properly be ftyled Liberal. The fubject and nat ure of it...

Ch. 3. Of the firfl Mechanical faculty, the Ballance.

Ch. 4. Concerning the fecond Meshanick faculty, the Leaver.

Ch. 5. How the natural mot ion of living creatures is conformable to thefe artificial rules.

Ch. 6. Concerning the Wheel.
1 Ch. 7.

The Contents.

Ch. 7, Concerning the Pulley.
Ch. 8. Of the Wedg,

Ch. g. Of the Screw.

Ch. 10. An inguiry into the magnifceext works of the Ancients, which muchexceeding our later times,may Jeem to infer a decay in thefe Mechanical arts.

Ch. II. That the Ancients bad divers motives and means for futh vaft magnificent works, whith we have not.

Ch. 12. Concerning the force of the Mechanick faculties; particularly,the Ballance and Leaver. How they may be contrived to move the whole world, ar any ot her conseivable meight.

Ch. 13 . Of the Wheel, by multiplication of which, it is eafie to move any imagi. nable weight.

Ch. 14. Connerning the infinite ftrength of Wheels, Pulleys, and Screws;

The Contents.
that it is postiche by the multiplication of the fer ta pull up an Oak by the roots smith a limit, lift it up with a fran, or blow it in with ones breath, or to perform the greatest labour with the leafs power.

Ch. 15. Concerning the proportion offlownefs and Swiftness in Mechanical motions.

Ch. 16. That it is poffible to contrive Such ans artificial motion as @all be of a frowned /s proportionable to the fwiftrie/s

- of the heavens.

Ch. 17. Of fwiftne s, how it may be iss cred ed to any kind of proportion. Coscerining the great force of Archimedes bis Engines. Of the Ballifta.

Ch. 18. Concerning the Catapults, or Engines for Arrows.

Ch. 19. A comparifon betwixt the fe arkcent Engines, and the Gur-ponder instruments now in user.

Ch. 20،

The Contents.
Ch.i20. That it. is poffible no contrive fuch an artificial motions as may be equally fwift with the suppofed motion of the heavens. .
(The Second 2B00E.
Ch. I.' $\rightarrow H E$ divers kinds of Auto mata, or Self-movers: Of Mills. Of the contrivance of feveral motions by rarified air. A brief digreffion concerning Wind-guns.

Ch. 2. Of a failing Chariot, that may without horfes be driven on the land by the wind, as Jips are on the fea.

Ch. 3. Concerning the fixed Automata; Clocks, Spheres reprefenting the beavenly mptions. The feveral excellesscies that are moft commendable in fuch kind of contrivances.

Ch. 4. Of the movable and gradient Automata, reprefenting the motion of living creatures, various Sounds, of birds, or beafts, and Lome of them artioulate.

The Contents.

Ch. 5. Concerning the poffibility of framing aniffolfor Submarine Navigatioms. The Difficulties and Conventionce of fuck a contrivance.

Ch. 6. Of the volant Automate; Archytas his Dove, and Regiomontanus his Eagle. The pofibility and great usefulness of Such inventions.

Ch. 7. Concerning the Art of lying. The Several mays whereby this hath been, or may be attempted.

Ch. 8. Arefolution of the two chief diefaculties that Seem to oppose the poifibicity of afying Chariot.

Ch. 9. Of a perpetual motion. The Seming facility and real difficulty of any 'Such contrivance. The Several ways whereby it hath been attempted, particularly by Cbymiftry.

Ch. 10. Of fubterraneous Lamps, divers biforical relations concerning their dhs. ration for many hundred years to. ether.

Ch. II.

The Contents.
Cha 11 Several opinions concerning the suture and reason of, the fe perpetual Lamps.
Chap. 12. The moft probable conjenature have the fe Lamps severe frei. med.

Ch. 13. Concerning feveral attempts of contriving a perpetual motion by magmetical virtues.

Chap. 14. The feeming probability of effecting a continual motion by folid weights in a hollow whee or Sphere.

Ch. 1 5. Of composing a perpetual motion by fluid weights. Concerning Archimodes his wiater-fcrew. The great probability of accomplibbing this inquiry by the help of that, with the fallible c mes of it upon experiminent.

ARCH

ry
 ARGHIMEDES:

0 R ,
Mechanical Powers.

Che fitt 250 Ek .

C A P. I.

The Excellency of the fe Arts. Why they terere concealed by the Ancients. The Authors that bave treated of them.

A
L L thofe various Studies about which the fons of men do bufie their endeavours may be generally comprifed under thefe three kinds:

SDivine.
\{Natural.
<Artificial.
B
T
'Archimedes; or; Lib. I.
To the firlt of thefe, is reducible, notonly the \int pecubation of Theological Truths, but alfor the practice of thofe Virtues which may advantage our minds in the enquiry after their proper happinefs. And thefe Arts alone may truly be ftiled Liberal, Que Sen Ep. liberum faciunt hominem, quibuss cure 88. virtus eff, (fiith the Divine Stoick) which fet a man at liberty from his lufts and paffions.

To the Second, may be referred all that knowledge which concerns the frame of this great Univerfe, or the ufual courfe of Providence in the gotetpopent of thefe created things.
To the Lalt, do belong all thofe Inventions, whereby Nature is any way quickned or advanced in her deFects: Thefe Artificial Experiments being (as is were) but fo many Effays, whexely men do naturally attempt 40 reftore themfelves from the firf general curfe inflictedupon their La bours.

This following Difcourfe does properly appertain to this latter kind. :

Now

Cap. 1. Mechanical Powers.
Now Att may be faid either tò imitate Nature, as in Limning and PiCtures; for to belp Nature, as in Medicine; or to overcome and advance Na ture, as in thefe Mechanical Difciplines, which in this refpet are by 50: much to be preferred before the other, by how much their end and power is more excellent. Nor are they therefore to be efteemed lefs noble, becaufe more practical, fince our beft and moft divine knowledge is intended for action; and thofe may juftly be counted barren ftudies; which do not conduce to Practice as their proper end.
But fo apt are we to contemn every thing which is common, that the ancient Philofophers efteemed it ai great part of Wifdom, to conceal sheir Learning from vulgar apprehenflon or ufe, thereby the better to' maintain it in its due honour and tefpeat. And therefore did they ge: terally vail all their Arts and Sciences under fuch myitical expreffions, as might excite the peoples wonder

Archimedes;-or,-Lib. I.

 and reverence, fearing left a more eafie and familiar difcoyery might expofe them to contemper sic ipfa myfteria fabularum cuniculiz operiun: tur, fummatibus tantum viris, Japientia interprete, ver a arcani con/ciis; Contexti fint religui, ad venerationem, figuris defendentibus à vilitate fecretum, faith a Platonick.Hence was it, that the ancient Mathematicians did place all their learning in abftracted Ipeculations, refufing to debafe the principles of that noble Profeffion unto Mechanical Experiments. Infomuch, that thofe very Authors amongtt them, who were moft eminent for their inventions of this kind, and were willing by their own practice, to manifeft unto the uorld thofe Arrificial wonders that might be wrought by thefe Arts, as Dedalus, Archytas, Archimedes, \&c. were notwithftanding fo much infeated with this blind fuperfition, as not to leave any thing in writing cortcerning the grounds and manner of shefe operations.

Cap. 1. Mechanical Powers.

Quintilian feaking to this pur Quint. 1 . pofe of : Ariblhimedes, faith thus: Quam- 1. .c. 1o. vís tantum_tamque fingularem Geometriciu ufum, Archimed's, fingularibisis exemplis, ơ admirandis operibus offenderit, propter que non bumana fed divina Scientic Laudem fit adeptus, bafit tamen in illa Ptatomis per/uafone, nec ullam Mechanicam Liter an prodere voluit. By which means, Pofterity hath unhappily loft, not only the benefit of thofe particular difcoveries, but alfo the proficiency of thofe Arts in general. For when once the learned men did forbid the reducing of them to particular ufe and vulgar experiment, others did thereupon refufe thefe ftudies themfelves, as being but empry and ufelefs fpeculations. Whence it came to pafs, that the Science of Geometry was fo univerfally neglected, receiving little or no addition for many hundred years

Pet. Ratr. Schol.M20 them. 1. I: together.

Amongft thefe Ancients, the divine Plato is obferved to be one of the greateft fticklers for this fond opinion, opinion, feverely dehorting all his followers from proftitutid Mathematical Principles, unto common ap-: prehenfion or practice. Like the enPlin. Nat. vious Emperour Tiberius, who is re1.36. c.26. ported to have killed an Artificer for making glafs malleable, fearing left thereby the price of Metals might be debafed: So he, in his fupertition. to Philofophy, would rather chure to deprive the world of all thofe ufe. ful and excellent Inventions which might be thence contrived, than to expofe that Profeffion unto the contempt of the ignorant vulgar.
Ariff.

Quaft.

Mechan.
But his Scholar Ariftotle, (asinmany other particulars, to likewife in this) did juftly oppofe him, and became himfelf one of the firft Authors that hath writ any methodical Difcourfe concerning thefe Arts ; chufing: rather a certain and general benefit, before the hazard that might accrue from the vain and groundlefs difrefpects of fome ignorant perfons. Being fo far from efteeming Geometry difhonoured by the applicati-

Cap. 1. Mechanical Powers.
on of it to Mechanical practifes, that hie rather thought it to be thereby adorried as with curious variety, and to be exalted unto its natural end. And whereas the Mathematicians of thofe former ages, did poffefs all their Learning, as cóvetous men do their Wealch, only in thought and notion; the judicious Arifotle, like a wife Steward, did lay it out to particular ufe and improvement, righty: preferring the reality and fubftance of publick benefit, before the fhadows of fome retired fecculation, or vulgar opinion.
Since him, there have been divers other Authors, who have been eminent for their Writings of this nature. Such were Hero Alexandrimus, Hero Mechanicus, Pappus Alexandxinus, Proclus Mathematicius, Vitruvius, Guidus Vhaldus, Hearicus Monantbo-
 rinus, ơc. Befides many others, that have treated largely of feveral En. gines, as Auguftine Ramelli, Vittoriq Zoncha, Facobus Beffonius,
Lipfius.
Begetious,
Mof

Moft of which Authors I have perufed, and hall wilhnghacknowledge my felf a debtor to them for many things in this following Difcourle.

C A P. II.

Concerning the Name of this Art. That it may properly be ftyled Liveral. The fubject and nature of it.

Lypfius Polyorcet, 1. 1. Dia-
log. 3.
That's a
Senfelefs abfard Etymnology im. pofed by
fome, Quia intellectus in eis moschafur, as if thefe arts did proffiture and an dulterate the Underfanding.
$\square \mathrm{He}$ word Mechanick is thought to be derived doxi ré μ nuss is àvav, multum afcendere, pertingere: intimatnig the efficacy and force of fuch Inventions, Or elfe waxe μ ѝ $\chi^{\text {ai- }}$ vev (Faith Euiftathius) quia bijcere non finit, becaule thefe Arts are fo full of pleafant variery, that they admit not either of floth or wearinefs.

According to ordinary fignification, the wo d is ufed in oppofition to the LiberalArts: whereas in propriety of fpeech thofe employments alone may be ftyled Illiberal, which require only fome bodily exercife, as Manufactures, Trades,\&c. And on the con-

Cap. 2. Mechanical Popers.

9

 contrary, that difcipline which difcovers the igenteral caufes, effects, and propertieg'of things, may truly be efteemed as á pecies of Philofophy. But here it fhould be noted, that this Art is ufually diftinguifhed into atwofold kind:
1. Rational,

2. Cheirurgianl.

The Rational is that which treats of thofe Principles and Fur da nental

Pappus
Proem. in Colleat.
Mathem. l. 8. Notions, which may concern thefe Mechanical practifes.

The Cheirurgical, or Mamal, doth refer to the making of there Fnftroxments, and the excrcifing of fuch particular Experiments. As in the works of Architecture, Fortifications, and the like.

The firf of thefe, is the fubject of this Difcourfe, and may properly be ftiled Liberal, as juftly delerving the profecution of an ingenuous mind. For if we confider it according to its birth and original, we fhall find it to fring from honourableParentage, being produced by Geametry on the the other. If according to tis ufe and benefit, we may then difcern, that to this hould be referred all thofe Arts and Profeffions fo neceffary for hur mane fociety, whereby Nature is not only directed in her ufual courle, but fometimes allo commanded againft her own law. The particulars that concern Architecture, Navigation, Husbandry, Military affairs, \&c. are mot of them reducible to this Art, both for their invention and ufe.

Thofe other difciplines of Logick, Rhetorick, \& c. do not more protedt and adorn the mind, than thefe Mechanical powers do the body.

And therefore are they well worthy to be entertained with greater induftry and refpect, than they commonly meet with in thefe times; wherein there be very many that pretend to be Mafters in all the Liberal Arts, who fcarce underfand any thing in thefe particulars.

The fubject of this Art is concerning the heavinefs of feveral bodies,

Cap. 2. Mechanical Powers.

or the proportion that is required berwixt any 'Weight, in relation to she: power which may be able to move it. And fo it refers likewife to violent and artificial motion, as Philofophy doth to that which is ne: cural.

The proper end for which this Art is intended, is to teach how by underflanding the true difference betwixte the Weigbt and the Power, a man may add fuch a fitting fupplement to the frength of the Power, that it fhall be able to move any conceivable Weight, though it fhould never fo much exceed that force which the Power is naturally endowed with.

The Art it felf may be thus defribed to be a Mathematical Difcipline, which by the help of Geometrical Principles, do teach to contrive feveral Weights and Powers, unto any kind, either of motion or reft, according as the Artificer fhall determine. :
If it be doubted how this may be efteemed a fpecies of Mathematicks, whenas it treats of Weights, and not

Dev.Rivaltus pref. in lib. Archimed.de centro of Quantity ; For fatisfaction tothis, thereare two particulars confiderable.

1. Mathematicks in its latitude is ufually divided into pure and mised: And though the pure do handle onIy abftrate quartity in the general, as Geometry, Arithmetick; yet that which is misced, doth confider the quantity of fome partitular determinate fubject: So Aftronomy handles the quantity of Heavenly motions, Mufick of founds; 3pd-Mecbanicks of weights and powers. 2. Heavinefs or Weight is not here confidered, as being fuch a natural quality, whereby condenfed bodies do of themfelves tend dowsswards; but rather as being an affection, whereby they may be meafured. And in this fenfe Ariftotle himfelf refers it amongt Metaph. l. the other /pecies of quantity, as having 10. c. 2. the fame proper effence, which is to be compounded of integral parts So a pound doth confift of ounces, drams, fcruples. Whence it is evident, that there is not any fuch repugnancy in the fubject of this Art, as may hinder it from being a true /pecies of Mather maticks.

Cap. 3. Mechanical Powbers.
\rightarrow HE Mechanical Faculties, by which the Experiments of this nature muft be contrived, are ufually reckoned to be thefe fix:

Unto fome of which, the force of all Mechanical Inventions muft neceffarity be reduced. I fhall feeak of them teverally, and in this order.

Firft concerning the Ballance ; this and theLeaver are ufually confounded together, as being but one faculty, becaufe the general grounds and proportions of either force is fo exactly the fame. But for better diftinction, and more more clear difcovery of their natures, I. Shall treat of them feverally:

The firft invention of the Ballance is commonly. attribured to Aftree, who is therefore deified for the goddefs of Juftice ; and that Inftrument it felf advanced amongit the Coefeftial figns.

The particulars concerning it, are fo commonly known, and of füch eafie experiment, that they will not need any large explication. The chief end and purpofe of it, is for the diftinction of feveral ponderofities; For the underftanding of which, we muft note, that if the length of the fides in the Ballanee, and the weights at the ends of them, be both mutually. equat, then the Beam will be in a horizontal fcituation. ${ }^{2}$ But on the contriary, if either the weights alone be equat, and not their diftances or the diffances alone, and not the weights, then the Beatr will accord: ingly decline.
As in this following diagram.

Sup-

Cap. 3: Mechanical Tomers.

Suppofean equal weight at C, unto that at B, (which points are both equally diftant from the center A,) it is evident that then the beam $B F$, will hang horizontally. But if the weight fuppofed at C, be unequal to that at B, or if there be an equal weight at $D E$, or any of the other pnequal diftances; the Beam muft then neceffarily decline.

With this kind of Ballance, it is ufual by the help only of one
weight, to meafure fundry different gravities, whether more or lefs than

Cardan,
Sabial. it: that by which they are meafured. As by the example here defcribed, a man may with one pound alone; weigh any other body within ten pounds, becaufe the heavinefs of any weight doth diftance from the Center. Thus one pound at D, will equipoinderate unto two pounds at B, becaufe the diftance. $A D$, is double unto $A B$. And for the fame reafon, one pound at E, will equiponderate to three pounds at B; and one pound at F, unto ten at B, becaufe there is ftill the fame difproportion betwixt their feveral diftances.

This kind of Batlance is ufually

Mechan. c. 11 .

Prov. III.I. c. 16. II. Item cap. 20. 10, 23. Pappus Col leEF. Mathetio. l. 8. ftyled Romana, fatere. It feems to be of ancient ufe, and is mentioned by Ariftotle under the name of $\varphi a^{\prime} \lambda \alpha \gamma^{\prime} \xi$. Hence it is eafie to apprehend, how that falfe Ballance may be compofed, fo often condemned by the Wifeman, as being an abomination to the Lord. If the fides of the Beam be not eiqually divided, as fuppofe one have 10 parts, and the other \& 4 , then any two weights that differ according to this proportion (the heavier being placed on the fhorter fide, and the lighter on the longer) will equiponderate. And yet both the fcales being empty, Ghall hang in aquilibrio3

Cap. 3. Medbanical Pozers. as if they were exactly jult and true, as in this defcription.

Suppofe $A C$, to have I fuch parts, whereof $A B$, has but 10 , and yet both of them to be in themfelves of equal weight ; it is certain, that whether the fcales be empty, or whether in the fcale \dot{D}, we patripound, and at $E i \circ$ pound, yet both of them Thall equiponderate, becaufe there is juft fuch a difproportion in the length of the fides; $A C$, being unto $A B$, as is to 10 .

The frequency of fuch cozenages in thefe dayes, may be evident from common experience : and that they were ufed allo in former ages, may C appear

Question. appear -from Aristotle's teftimony conMeghan. corning the Merchants in his time. For c. 2.

Budxus. cents did appoint divers Officers fyled दugoraita, who were to overlook the common mealures.

So great care was there among lt the Jews for the prefervation of commutative justice from all abufe and falfification in this kind, that the publick ftandards and originals by which all other meafures were to be tryed and allowed, were with much religion preferved in: the Sanctuary, the care of them being committed to the Priefts and Levies, whore office
${ }_{1}$ Chiron. it was to look unto all manner of tea23: 29 .

Lev. 7.25 eftimations ball be according to the Jljakel of the Sanctuary; which doth not refer to any weight or coin, diftinct from, and more than the vulgar, (as forme fondly conceive) but doth only oblige men in their deal(ing and traffique to make use of foch jut

Cap. 3. Mechanical Powbers.

juft meafures, as were agreeable unto, the publick ftandards that were kept in the Sanctuary.

The manner how fuch deceitful ballances may be difcovered, is by changing the weights into each other fcale, and then the inequality will be manifeft.

From the former grounds rightly apprehended, it is eafie to conceive how a man may find out the jult proportion of a weight, which in any point given, fhall equiponderate to feveral weights given, hanging in feveral places of the Beam.

Some of thefe Ballances are made fo exact, (thofe efpecially which the Refiners ufe) as to be fenfibly turned with the eightieth part of a grain: which (thongh it may feem very ftrange) is nothing to.what * Capellus relates of one at Sedan, that would $\begin{gathered}\text { Mafeaves }\end{gathered}$ turn with the four hundredth part of a grain.

There are feveral contrivances to make ufe of thefe in meafuring the weight of blows, the force of powder,

Roman foot.
De ponderibus ${ }^{2}$ nummis; 1. 1. C_{2}
the fubftances, condenfed aris, the diftinct proportion of feveral metals mixed together, the different gravity of divers bodies in the water, from what they have in the open air, with divers the like ingenious inquiries.

C A P. IV.

Concerning the SecundMechanick faculty, the Leaver.

ๆME fecond Mechanical faculty, is theLeaver; the firft invention

 of it is ufually afcribed to Neptune, and reprefented by his Trident, which in Ariftotle Quxf.
Mechan. cap. 4. Archimedes,de $\not \subset$ -quiponderant. 1. r. frop. 7. Vitruvius Archite? 1. Io.c. 8 . theGreek are both called by one name, and are not very unlike in form, being both of them fomewhat broader at one end, than in the other parts.

There is one main principle conerning it, which is (as it were) the very fum and epitome of this whole art. The meaning of it is thus expreffed by Ariftotle, \& $7 \dot{j}$ uarusuvv 6 áes wès

is, as the weight is to an equivalent power, fo is the diftance berwist the weight and the center, unto the diftance betwixt the center and the power, and fo reciprocally. Or thus, the power that doth equiponderate withany weight, mult have the fame proportion unto it, as there is betwixt their feveral diftances from the center or fulciment: as in this folowing figure.

Where fuppole the Leaver to be *Tis Arireprefented by the length $A B$, the flotle calls center or * prop at the point C, the weight to be fuftained D, the power that doth uphold it E.

Now the meaning of the forefaid principle doth import thus much, that the power at E, mult bear the C 3 fame $\underset{\text { itcor }}{\substack{\text { ind }}}$
Vitruvius preffio. Ubaldus Fulcimentum, Dan. Barbarus, Scabellum
fame proportion to the Weight \boldsymbol{O}, as the diftance $C A$, doth to the other $C B$; which, because it is octuple in the prefent example, therefore it will follow that one pound at B, or E, will equiponderate to eight pounds at A, or D, as is expreffed in the figure. The ground of which maxime is this, becaufe the point C, is fuppofed to be the center of gravity, on either fide of which, the parts are of equal weight.

And this kind of proportion is not only to be obferved wen the power doth profs downwards, (as in the former example) but aldo in the other facies of violent motion, as lifting, drawing, and the like. Thus if the prop or futciment were fuppofed to be at the ex. tremity of the Leaver,

as in this Diagramat A, then the weight B, would require fuctr a difference in the ftrengets or powers that did fultain it, as there is betwixt the feveral diftances $A C$ and $B C$. For as the diftance $A B y$ is unto $A C$, fo is the power at C, to the weight at B; that is, the power at A, mult be double to that attc, becaufe tha diftance $B C$, is twice as muchas $B A$. from whence it is eafie to conceive, The right underfanditing of this dot's muich corsduce to the explication of the palley. how any burden carried betwixt two perfons, may be proportioned according to their different ftrengths. If the weight were imagined to hang at the number 2 , then the powerar C, would futtain but two of thoofe parts, whereof thatat \dot{A}, did uphold 16. If it be fuppofed at the figure (3) then the ftrength at C, to that at A, would be butas three to fifteen. But if it were fituated at the figure (g) then each of theexrremities would participate of it alike, becaufe that being the middle, both the diftatices are equal. If at the number (12) then the ftrength at C, is required to te double double unto that at A. and in the like manner are we to conceive of the 0 ther intermediate divifions.

Thus alfo mult it be, if we fuppote the power to be placed betwixt the fulciment and the weight, as in this example.

Where, as $A C$, is to $A B$, fo is the power at B, to the weight at C.

Hence likewife may we conceive the reafon'why it is fo much harder to carry any long fubftance, either on the fhoulders, or in the hand, if it.be held by either of the extremes, thanifit .be fuftained by the middle of it. The ftrength that mult equiponderate at the nearer end; fometimes increafing the weight almolt double to what it is initfelf.

Imagine

Cap. 4. Mechanical Powers.

Imagine the point A, to be the place where any long fubftance (as (uppofe a Pike) is fuftained, it is, evident from the former principle, that the ftrength at B, (which makes it lye level) muft be equal to all the length $A C$, which is almolt the whole Pike.
\therefore And as it is in the depreffing, or elevating, folikewife is it in the drawing of any weight, as a Coach, Plow, or the like.

Let

Let the line $D B$, reprefent the Pole or Carriage on which the burden is futtained, and the line $A C$, the crops barr; at each of its extremities, there is a feveral firing tree $G H$, and $I K$, to which either horfes or oxen may be faftned. Now becaufe A, and C, are equally, diftant from the middle B, therefore in this cafe the ftrength mut be equal on both fides; but if we fuppofe one of there faring trees to b efaftned unto the points E, or F, then the ftrength required to draw on that fide, will be fo much more, as the diftance $E B$, or $F B$, is left than that of $A B$; that is, either as three or four, as $E B$, to $B A$,

Cap. 4. Mecbanical Powers: $B A$, or as one to two, as $F B$, to $B A$. So that the beaft faftned at A, will not draw fo much by a quarter, as the other at E, and buthalfas much as one at F.

Whence it is eafie to conceive how a husbandman (crum inequales veniunt ad aratra juvenci) may proportion the labour of drawing according to the feveral ftrength of his Oxen.

Unto this Mechanical faculty fhould be reduced fundry other inftruments in common ufe: Thus the Oars; Stearn, Mafts, \&c. according: to their force, whereby they give motion to the fhip, are to be conceived under this head.
Thus likewife for that engine, whereby Brewers and Dyers do commonly draw water, which Ariftotle calls $n \lambda{ }^{\prime}-$ ν erov, and others Tellenon. This being the fame kind of Inftrument; by which Arcbimedes drew up the dhips of Marcellus'

Arif. Mochan. C 5, 6, 7.
Vide Guevar. Comment.

Mechan-
c. 29.

Pet. Grinitus, de honefta Difciplina 1. 19. c. 2 calls it corruptly Tellenon.

> C. A P.

How: the natheral motion of living creatures is comformible to thefe artiffcialrules.

TH E former Principle being already explained, concerning artificial and dead motions, it will not be atogether impertinent, if in the next place we apply it unto thofe that are natural in living bodies, and examine whether thele alfo are nor governed byshe farme kind of proportions.

In all perfect living creatures, there is a twofold kind of motive inftruments.

1. Primary, the Mufcles.
2. Secondary, the Members.

The Mufcles are naturally fitted to be inftruments of motion, by the manner of their frame and compofare ; confifting of Aefla as cheir chief material, and befides of Nerves, Ligatures, Veins, Arteries, and Membraices.

The

Cap. 5. Mechanical Powers. The Nerves ferve for the convey-

 ance of the motive faculty from the brain. The Ligatures for the ftrengthning of them, that they may not flag and languifh in their motions, The V eins for their nourifhment. The $A r$ teries for the fupplying of them with fpirit, and natural vigor. The Membrances for the comprehenfion or inclofure of all thefe together, and for the diftinction of one mufcle from another. There are befides divers fi fibre or hairy fubftances, which $\mathrm{Na}-$ tura hath beftowed for the farther corroborating of their motions; thefe being difperfed through every mufcle, do fo joyn together in the end of them, as to make intire nervous bodies, which are called Tendones, almoft like the grinles. Now this (faith Gaten) may fitly be compared to the broader part of the Leaver, that is putunder the weight, which, as it ought to be fo much the ftronger, by how much it is put to a greater force; fo likewife by this doth nature inable the mufcles and nervesDe Placit.
Hippoc.\&
Platon. 1.
10.c. 10. would be too difficult for them. Whence it may evidently appear, that according to the opinion of that eminent Phifician', thefe natural motions are regulated by the like grounds with the artificial.
2. Thus alfo is it in thofe fecondary inftruments of motion, the members: amongft which, the hand is Deufu- épzayov ópzecivov, the inftrument of inpirtium.l. ftruments (as Galen ftyles it) ; and as the foul of man doth bear in it the image of the divine wifdom and providence, fo this part of the body feems in fome fort to reprefent the Omnipotency of God, whillt it is able to perform fuch various and wonderful effects by the help of this art. But now for its own proper natural ftrength, in the lifting any great weight, this is always proportioned according to its extenfion from the body, being of leaft force when it is fully ftretched out, or at armsend, (as we fay) becaufe then the fhoulder joynt is as the center of its

Cap. 5. Mechanical Powers.
its motion, from which, the hand in that pofture, being very remote, the weight of any thing it holds mut be accordingly augmented. Whereas the arm being drawṇin, the elbow-joynt doth then become its center, which will diminifh the weight proportionably, as that part is nearer unto it than the other.

To this purpofe alto, there is another fubtil probleme proofed by Arifottle, concerning the poftures of fitting and rifing up. The quart is this, Why a man cannot rife up from

Mechan.
C. ${ }^{1}$ his feat, unless he frt, either bend his body forward, or thruft his feet backward.

In the pofture of fitting, our legs are fuppofed to make a right angle with our thighs, and they with our backs, as in this figure.

Where

Where let $A B$ reprefent the back, $B C$ the thighs, $C D$ the legs. Now it is evident, that a man cannot rife from this poiture, unlefs either the back $A B$, do firt incline unto F, to make an acute angle with the thighs $B C$; or elfe that the legs $C \cdot D$, do incline towards E, which may alfo make an acute angle with thethighs $B C$; or laftly, unlefs both of them do decline to the points $G H$, where they may be included in the fame perpendicular.

For

Cap. 5. Mechanical Powers.'
For the reflutuion of which, the Philofopher propofes thefe two par-4 ticulars.
I. A right angle (faith he) is a kind of equality, and that being naturally the caute of reft, muft reeds be an impediment to the motion of rifing.
2. Becaule when either of the parts are brought into an acute angle, the head being removed over the feet, or they under the head; ;in' fuch a pofture the whole man is much nearer dilpofed to the form of flanding, wherein all thefe parts are ind one ftraight perpendicular line, than he is by the other of right angles, min which the back and legs are two parallels ; or that of turning thefe' ftraight angles into obtufe, which would not make an erect pofture, bub declining.

But neither of thefe particulars (as I conceive) do fully fatisfie the pre-1 fent quare, neither do the Commentators, Maisantholius, or Guevara, better refolve it. Rather fuppofé E C, to be as a Vectis or Leaver, toD. wards wards the middle of which is the place of the fulciment, $A B$, as the weight, $C D$, the power that is to raife it.

Now the body bèing fituate in this rectangular form, the weight $A B$, mult needs be augmented proportio nably to its diftance from the fultciment, which is about half the thighs; whereas if we fuppofe either the weight to be inclined unto \vec{F}, or the power to E, or both of them to $\boldsymbol{G}_{i} H$, then there is nothing to be lifted up, but the bare weight it felf, which in this fituation is not at all increafed with any addition by diftance.

For in thefe conclufions concerning the Leaver, we muft always imagine that point which is touched by a perpendicular from the center of gravity, to be one of the terms. So that the diverfe elevation or depreffion of the inftrument, will infer a greatialteration in the weight it felf, as may more clearly be difcerned by this following Diagram.

Cap. 5. Mechanical Powers.

Where A is fuppofed to be the place of the prop or fulciment; $B C$ a Leaver which ftands horizontally, the power and the weight belonging unto it, being equal both in themlelves; and alfo in their diftances from the prop.

But now fuppofe this inftrument to be altered according to the fituad tion $D E$, then the weight D will be diminifibed, by fo much, as the perpendicular fromits center of graD_{2} vity vity $H I$, doth fall pearer to the prop or fulciment at A. And the power at E, will be fo much augmented, as the perpendicular from its center $K E$ does fall farther from the pointat A. And fo on tho contraty in that other fituation of the teaver $F G$; whence it is eafie to conceive the tried reafon why the inclining of thebody'-ergitie putting back of the leg, fhould fo much conduce to the Facility of rifing.

Sir Franc. Bacon's Nat.Hif. Exp.731. From thefe grounds Likewife may we underftand, why the knees fhould be molt weary in afcending, and the thighs in defcending ; which is becaufe the weight of the body doth bear moft upon the knee joints, in raifing it felf up, and mott upon the mulcles of the thighs, when it ftays it felf in coming dowa.

There are divers other natural problems to this purpofe, which I forbear to recite. We do not fo much as go, orfit, or rife, without the ufe of this Mechanical Geometry :

Cap. 6. Mechanical Powers.

37

CAB. VI.

Conserning the Wheel.
THE third Mechanical faculty is commonly ftiled axis in peritrochio. It confifts of an axis or Cylinder, having a ruindle about it, wherein there are faftned divers fpokes, by which the whole may be turn'd round, according to this figure,

D 3 Where

Arclimedes ; or, Lib. I..

 Where $B C$ does reprefent the Cy linder which is fuppoled to move upon a fmaller Axis at E, (this being all one in comparifon to the feveral proportions, as if it were a meer Mathematical line) $L G$, is the rundle or wheel, H FI K, feveral fpokes or handles that are faftned in it; D, the place where the cord is faftned for the drawing or lifting up of any weight.The force of this inftrument doth confift in that difpropertion of diftance, which there is betwixt the Semidiameter of the Cylinder $A B$, and the Semidiameter of the rundle with the fpokes $F A$. For let us conceive the line $F B$, to beas a Leaver, wherein A is the center or fulciment; B the place of the weight, and F of the power. Now it is evident from the former principles, that by how much the diftance $F A$, is greater than $A B$, by fo much lefs need the power be at F, in refpect of the weight at B. Suppoie $\boldsymbol{A} B$ to be as the tenth part of $A F$, then the pow-

Cap. 6. Meclanical Powers.

er or ftrength which is but as a hundred pound at F, will be equal to thouland pound at B.

For the clearer explication of this faculty, it will not be amifs to confider the form of it, as it will appear, being more fully expofed to the yiew. As in this other Diagram.

Suppofe $A B$ for the Semidiameter of the Axis or Cylinder, and $A C$. for the Semidiameter of the rundle, with the fpokes; then the power

D 4
at
y. Dgited by Google at C, which will be able to fupport the weight D, mult bear the fame proportion unto it, as $A B$ doth to $A C$; fo that by how much fhorter the diftance $A B$ is, in comparifon to the diftance $A C$, by to much lefs need the power be at C, which may be able to fupport the weight D, hanging at B.

And fo likewife is it for the other fpokes or handles $E F G H$, at either of which, if we conceive any power which Ghall move according to the fame circumference wherein thefe handles are placed, then the Arength of this power will beall one, as if it were at C, But now fuppofing a dead weight hanging at any of them, (as at E,) then the difproportion will vary. The power being fo much lefs than that at C, by how much the line $A C$ is longer than $A I$. The weight K, being of the fame force at E, as if it were hung at I, in which point the perpendicular of its gravity doth cut the Diameter.

The chief advantage which this

- Cap. 6. Mechanical Poppers. inftrument doth beftow, above that of the Leaver, doth confift in this particular. Ina Leaver, the motion can be continued only for fo fhort 2 fpace, as may be anfwerable to that little diftance betwixt the fulciment and the weight : which is always by fo much leffer, as the difproportion betwixt the weight and the power is greater," and the motion it felf more eafie. But now in this invention, that inconvenience is remedied; for by a frequent rotation of the axis, the weight may be moved for any height or length, as occafion thall require.

Unto this faculty may we refer the force of all thofe engines which confift of wheels with reeth in them.

Hence alfo may we difcern the rea: fon why fundry inftruments in common ufe, are framed after the like form with the following figares.

All which are but feveral kinds of this third Mechanical faculty. In which the points $A B C$, do reprefent the places of the power, the fulciment, and the weight. The power being in the fame proportion unto the weight, as $B C$ is unto $B A$.

CAP.

Cap. 7. Mechanical Powers.

C A P, VII.

Conicerning the: Pulleg.

THHat which is reckon'd for the fourth Facultys is the Pulley: which is of fuch ordinary ufe, that it needs not any particular defcrition. The chief parts of it are diverstittle rundles, that are moveable about their proper axes. Thefe are ufually di- Arijp. An vided according to their feveral fitu- chmm. . is. ations; into the upper and lower. If an engine have two of thefe rundles above, and two below, it is ufually called Starcas \widehat{G}, if three weéaocesos if many, толи́aro 50 .
The lower Pulleys only do give force to the motion. If we fuppofe a weight to hang upon any of the upper rundles, it will then require a power, that in it felf fhall be fully equal for the fuftainipg of it,

Archimedes; or, Lib. I;

The Diamiter $A C$, being as the beam of a ballance, of which B is the proper center. Now the parts A, and C, being equally diftant from this conter, therefore the power at E, muft be equal to the weight at D, it being all one as if the power and the weight were faftned by two feveral ftrings at the ends of the ballance F G.

Now all the upper Pulleys being of the fame nature, it muft neceffarily follow, that none of them do in themfelves conduce to the eafing of the power, or lightning the weight, but only for the greater convenien-

Cap. 7. Mechanical Pewers.

 cy of the motion, the cords by this means being more eafily moyed than otherwife they wauld.But now fuppole the weight toibe fuftained above the Pulley, 'ss it it is inall thofe of the lower fort; and shen the power which fupports it; pied be but half as muck as the weight it felf

Let $A C$, reprefent he Diameter of a lower Pulley, on whofe center at B, the weight is faftned; one end of the cord being tyed to a hook at D. Now it isevident, that half the weight is fuftained at D, fo that there is bur the other half left to be fuftained fuiftained by the power at E. It being all one as if the weight were tyed unto the middle of the ballance $F G$, swhofe ends were upheld by two fevewaliftrings,$F H$, and G I.
nat Ahd this famefubduple proportion with ftill remain, tho" we fuppofe an upper Pulley joyned to the lower; as in thefe two other figures.

Cap.7. Mechanical Papers.
Where the power at $A_{\text {, }}$ is equal to the weight at $B:$ Now the weight at B, being but half the ponderofity C, therefore the power at A, motwith. ftanding the addition of the upper rundle, mult be equivalent to half the weight ; and as the upper Pulleyondone doth npt abate any thing of athe weight, Ip neither being jpined with the lower, and the fame fubduple difference betwixt the power and the weight, which is caufed by the lower Pulley alone, doth fill remain unaltered, though there be an upper Pulley added unto it.

Now as one of thefe under Pulleys doth abate half of that heavinefs which the weight bath in it felf, and caufe the power to be in a fubduple proportion unto it; fo two of them do abate half of that which remains, and caufe a fubquadruple proportion, betwixt the weight and the power; three of them a fublextuple, four a fuboctuple : and fo for five, or fix, or as many as fhall be required, they will all of them diminifh the the weight according to this proportion.
Suppofe the weight in it felf to be 1200 pound, the apply ing ynto it one of thefe lower Pulleys, will make it burt as 600 , two of them as 300 , three of them as 1 so. © ${ }^{2}$:

But now, if we condecive the firt part of the Aring to be faftened unto the lower Pulley, as in this other figure at F ;

then

 A 70. 1 苗 thothos
rothoor mosman ai

10

of them fupporting a like thare of the burden. If unto this lower Pulley there were added anothet; then the powet would be unto the weight in a fubquintuple proportion. If attird, a fubleptuple, and fo of the reft. For we moftifipte, that the ebords in this influ umemtyte as fo many power and the rumales as fo many leatrers, ot ballances.
Hence it is eafie to conteive thow the fterigthof the power may be proportionded according to any fuch degree, as fhall be required; and how any weight given, may be moved by any power given.
'Tis фot material to the forte of this inftument, whether the rumdles of it be big or little, if they be made equal to ope another in their fevtral orders; bot it is mof coñvenient, that the upper fhould each of them increafe 'as they dre higher, and the other as they are lower, bectuleby this means the cords will be kept from tangling. Thele

Pulleys may be muktiplitd

Cap. 7. Mechanical Poners:
according to lundry different fituagions, not only, when they are fubordifare, as in the former examples, but atho when they are placed collaterally. From the former grounds it is ealie jo coneriye a ladder, by which a man mofy pull humelf up untoany height: ofor the performance of this, there is requiredonly aq upper and a lower funde: To the uppermof of there at A, there flould be fattened a harp grapple or cramp of iron, which may be apt to take hold of any place where it lights. This part being first raft up and fatned, and the faff $D E$, at the nether 'end, Being put betwixt thee legs, 'D that a man may fit upon the other $B C$, and take hold of the cord at F, II -evident that the weight of the perron at E, will be but equal to half fo much frength it fo that a man may eafily pull himfelf up to the place required, by leaning but little more th n half of his in m eight on the firing F. Or if the Pulleys be multiplied, this experiment may then be wrought with left labour.

$$
\begin{gathered}
\text { C Ait VIII. } \\
\text { of then edge. }
\end{gathered}
$$

M HE fift Mechanical faculty is the Wedge which is a known inftrument, commonly us'd in the cleaving

Chp. 8! Méclañical Poitsers. ving of wod The efficacy and great Atrength of it may be refolved unto thefe two particulars:
I. The form of it.
2. The manner whereby the power is imprefled upon it, which is byit the force of blows.

1. The formefit reprefents (as it whaf two Leavers.

Each fide $A D$, and A, being one, the points $B C$, being inftead of feveral props or fulciments; the weight to be moved at A, and the power that fhould move it, being applied to the top $D E$, by the force of fome ftroke or blow, as Ariftotle hath explained the feveral parts of this faculty. Bat now, fecaufe this inftrument may be fo ufed, that the E 3 point point of it thall not touch the body to be noved, as in thele other fo. güres:

Therefore Ubaldur hath more exactly applied the feveral parts of it according to this form, that the point A fhould be as the common fulciment, in which both the fides do meet, and (as it were) uphold one another: the points B and C; reprefenting than part of the Leayers where the weight is placed.

It is a general rule, That the more acute the angles of thefe wedges are by fo much more eafie will their motion be ; the force being more eafily impreffed, and the face wherein the pody is moved, being fa much the lefs.

The

Cap. 8. Mechanical Powers.

The fecond particular whereby this faculty hat f its force, is the manier whereby the power is impreft upon it, which is by a flroke or blow; the efficacy of which'dofh much exceded any other ftrength. For though we fuppole a wedge being laid on a price of timber, to be prefled down with never fo great 'a weight ; nay, though we frould apply unto it the power of rife other Mechanical engines, the Pulley'; Screw, \&c. yet the effect would be farce confderable, in comarifon to that of a blow.: The true reafon of which, is one of the greater fubtilties' in nadtue ; foot is it fully rendred by any of thole who have undertaken the refolution of it. Aristotle, Cardin, and Scaliger, do generally ascribe it unto the fwifnots of that motion; But there ferns to be fomething

Mechan.
C. 13.

Subt.1.17.
Exercit.
331. more in the matter than fo; for ocherwife it would follow, that the quick stroke of a fight hammer, Gould be of greater efficacy, than any fofter and more gentle friking of a great thould it come to pats, whatthe force of an arrow or bulteididicharged near at hand owhen the umpreflion of that violence, whergby thay are carried, is moft frefh, and fo in propapility the motion at its Wwifteft: is yet notwithftanding, much lefs thanit would be at a greater diffance?. There is therefore further confiderable, the quality of that inftrument by which this motion is given, and allo the conveniency off diftance through which if paffes :

Unto this faculty is ufually redu"ced the force of files, faws, hatchetrs, pt. which are, asit were, but fomar ny wedges faltned unto a yeftis or Teaver.

> CAPIX P

Of the S C:R'E W.
THat which is undually recited for , the fixth and laft Mechanick far culty, is the Screw, which is dofcribed to be a kind of wedge that is multiplied

Cap. 9 - Męcbinical Rowers. plied or hontinued by a helical revo-

 Tutionabout a; Gydinder, receiving ios motion not qrotn any froke, ktys from ally diftinguifhed into tyso feveral kinds :the malo, which is meantinathe former deferiptignis, and, she fentrates which is of a concave fuperfigies.

ThTbe former is noted in ohe figure with the letter A, the other withi: B : Ariffot luhimfeff doth noti for much as mention this iaftrument, which yet rotwithltanding is of greater force and labtilty, than any of the reft, It is chiefly applied to thie fquee. zing or preffing of things down wards,
wards, :as in the Preffes for'Printing, Cor winc, oyl, and lextracting the juice from ertier fruits, in the performance of which,the ftrength of one man may beof greater force, than the weight of a heavy mountain : It is likewife ufed for the elevating or lifting up of weighsis

The advantage of this faculty above the reft, doti mainly confift in this: the other inftruments do 'require fo much frength for the fupporting of the weeight to be moved, as may be equal nntoift, befides that other fuper-added power; whereby it is out-weighed and moved ; fo that in the operations by thele, a man does always feend himfelf in a continued labour.
Thus' (for example) a weight that is lifted up by a Wheel or Pulloy', will of it felf defcend, ifif there be not an equal poweri to furtain it, But now in the compofure of 8 crew, this inconvenience is peifecty remedied ; for fo much force as is communicated unto this faculy, from the power

Cap. 9. Mecbanical Pomers.

 power that isapplied iunto it i_{y} is ftill fetained b the very frame and nas ture of the inftrument it Self; fince the motion of it cannot poffibly return, but from the vary fame place where it Grift began. Whence it comes to paf, that any weight lifted up, with the-affiftance of this engine, may likewife be fuftained by it, without the help of any extiernal pouter, and cannot dgain defécnd unto is former place unlefs the handle of the Screw (where the mation firlt began) be turned back: fo that all the ftrength of the pawer, may be employed in the motion of the weight; and none fpent in, the fuftaining of it.The chief, inconvenience of this inftrument is, that in a fhort pace it will he ferewed, untoits full lengeth. and then it cappot be of any further ufe for the continuance of the motion, unless is be repurned back, and undone again as at the firft. But this is ufually remedied by another invention, commonly fyled a pexpe-

60 Arclimedes ; or, Lib:I: iund Screio, which that the motion of a:Whett, and the'force of a scrèm, being both infinite:

For the compofure of which, in: ftead of the female, or concave fcrew, there muft be a little Wheel, with fome notches in it, equivalent to

It is ufed in fome Watches. teeth, by which the other may take hold of it, and turnit round, as in thefe other figures. - This latter engine does fo far exceed all other contrivances to this purpofe, that it may juftly feem a wonder why it is not of as common ule

Cap -10. Mechanical Powers. ute in there times and places as any of the ref:

CA P. X.
An enquiry into the magnificent ports
of the Ancients, mich much exgesit
o ing our later times; may Jeep ta
to infer a defect in there Mechanical Arts
wat ids hater briefly treated conto $1:$ corning the general principles of Mechanicks, together with the diItinct proportions bet twixt the weight and the power fo each Several faculty of it: Whence it is effie to conceive the truth and ground of tho fe famous ancient monuments, which Feer aloft incredible to the fe following ages. "And"becaufe many of them recorded by Antiquity, were of fuck vat labour and magnific cense, and for mightily dirploportiStable to humáné ftrength, it Shall hot therefore be impertinent unto the purpose' aim ait, for to feecifie forme of of the nof remarkable a moogt them, and to enquire into thermeans atid occafion upon which they were firft attempred.

Amongft the Aspptians, we read of divers Pyramids? of fo vafta mata nitude, as tithe it felf in the fpace of B traky hundred years hath not yet
Li. 2.c175. devoured. Herodotas mentions ope of them, erected by Cleopes an Ægyprian King, wherein there was not any one ftone lefs than 30 foot long, all of theni being fetched from Arabia And not much after, the fame Author relatés, how Amafis another /Egppti $a n$, made himfelf a houfe of one entire ftone, which was is cubits long,

PLy. L. ${ }^{66}$. ca. 12. 14 broan, and 8 , cubits high. Ihe Tame Aviafis is reported to trave made the ftatue of a Sphipx, or figxptiay Cat, all of one fingle fone, whofe length was 143 foop, its height 62 foot, the compals of this ftatue's head containing toz foot in one of the Egyptian Temples confecrated
plin. l. 37. to Thuiter, there is related to be an Obelisk; confifting of 4 Smaragds

Cap. 10, Mechanical Powtrs.

or Emeralds; the a hole ts 40 enbits high, 4 cabies broad at the bottom, ond two at the top. Sefogtidsthe King
 dicated to Vidcand, is reported to have erected two ftatues, dhe for himelf, the iothet for his wite, both cornfilting of two Ceverallittones, each of which were 30 cubits high.
\therefore Amongt the Jews we read in fat ered Writ of Sdiompdn's Temple, which For its fate and magnificence might have been juftly reckoned amongit the other wonders of the world, wherein befides the great riches of the materials, there were works to of as great labiour. Pillars of Erafs 18 cultits high, and 12 cubits round; x Kings 2. 15.
cap.s.v.
17. great and coftly fones for the foumdation of it; fofephus tells us, that forne of them were 40 cubits; others 45 cabits long. And in the fame Chapter he mentions the three famous Towers built by Herod, wherein e-- very ftone being of whlte marble, was ro cubits long, o broadd, and 5 high. And which was the greatelt wop-

Diedo. Sio cul. Biblioth.L. 1 : SeCt. 2.:

54
$\therefore \therefore$ arschimedes, inor, oLib. I
wander, the old wall it felf was fitto ated on a fteep rifing ground and yet the hills, upon it, onthetops of which thele Towers were placed, were about 3 co cubits high, that 'tis fcarce imaginable by: what frepgth, fo many ftones of fuel great magnitude; Thould bie conveyed to fo high aplace.
Plin. l. 3^{6}. c. 14. Pancirol. Deperd. the : Ephefian Temple i dedicated to Diaina, wherein there were 127 CO . lumns, mads of fo many feveral ftenes; each of them 60 foot high, beng all taken out of the quarries in Afia. T Tis foried allo of the brazen coloffus, or great statue in the Illand of Rbodes, that whas 70 ci-
Plin. l_{34} 3: c. 3. bits high. The thumbs of it being fo big that na man could grafp one of them about with both; his arms; when it Itood upright a fhip might have paffed betwixt the logs of cif, with all its fails fully difplayed; being thrown down by an earth-quake, the brafsof it did load go Camels. But above ald ancient defigns to this puspole, that would have been moft wonder-

Cap. 10, Mechanical Powers.

 wonderful, which a Grecian Architect did propound unto Alexazder, to cut the Mountain Athos into the formVitruv.
Archit.1.2. of a ftatue, which in his right hand fhould hold a Town capable of ten thoufand men, and in his left a Velfel to receive all the water that flowed from the feveral fprings in the Mountain. But whether Alexander in his ambition did fear that fuch an Idol fhould have more honour than he himelelf, or whether in his good husbandry, he thought that fuch a Microcofm (if I may fo ftyle it) would have coft him almoft as much as the conquering of this great world, or what ever elfe was the reafon, he refufed to attempt it.

Amongft the Romans we read of a and charges of Nero, which was 120 foot high; Martial calls it Sjdereus, or ftarry

Hic ubi Sydereus proprius vidit aftra Colofjus. And it is ftoried of M. Curio, that he erected two Theatres fufficiF ently

Pancirol.
Deperd. Tit. 18. movable upon certain hinges; Sometimes there were feveral plays and fhows in each of them, neither being any difturbance to the other;and fometimesthey were both turned about, with the people in them, and the ends meeting together, did make a perfect Amphitheater: fo that the fectators which were in either of them, might joyntly behold the fame fpectacles.

There were befides at Rome fundry Obelisks, made of fo many intire ftones, fome of them 40, fome 80, and others 90 cubits high. The chief of them were brought out of Exypt, where they were dug out of divers quaries, and being wrought into form, were afterward (not without incredible labour, and infinite charges) conveyed unto Rome. In the year 1586, there was erected an old Obelisk, which had been formerly dedicated unto the memory of GubiusCafar. It was ene folid Itone, being an Ophite or kind of fpotted Marble. The height of it was 107 foor,' the breadth of it

Cap. 10. Mechimical Povers.
at the bouttom was 12 foot, at the top 8. Its whole weight is reckoned to be 956148 pounds, befides the heavinefs of all thofe inftruments that were ufed about it, which ((as it is thought) could not amount to tefs then $104^{2: 824}$ pounds. It was tranf placed as the cltarges of Pope Sixtus the fifth, from the left fide of the Watican, unto a more eminent place about a hundted foor off, where now in'Ifands. The moving of this Obelitsk iscelebrated by the writings of above S 6 feveral Authors; (faith Movian thotiza) all of themimentioningit, not withous math wonder and , praife. Now if:it ferm fo ftrange and glorious an attempt to move this? Obelisk for fo little a fpace; what theninsiay we think of the carriage of it our of Egypt, and divers other far greater works performed by Antiquity? This may feem to infer, that thefe Mechanical arts are now loft, and decayed amongtt the many other ruins of time; which yet notwithftanding cannot be granted, without much ingrati- tude to thofe learned men, whofe labours in this kind we enjoy, and may juifly boaft of. And therefore for our better underftanding of thefe particulars, it will not be amifs to enquire both why, and bow, fuch works hould be perform'din thofe former and ruder ages, which are not, and (as it fhould feem) cannot be effected in thefe later and more learned times. In the examination of which, we fhall find, that it is not the want of Art that difables us for them, fince thefe Mechanical difcoveries are altogether as perfect, and (I think) much more exact now, than they were heretofore; but it is, becaufe we have not either the fame motives ito attempt fuch works, or the fame means to effect them as the Ancients had.

Cap. 11. Mechanical Povers.

C A P. XI.

That the Ancients had divers motives and means for fuch vaft magnificent works, which we bave not.

THE motives by which they were excited to fuch magnificent attempts, we may conceive to be chief. ly three.
$\left\{\begin{array}{l}\text { Religion. } \\ \text { Policy. } \\ \text { Ambition. }\end{array}\right.$
: 1. Religion. Hence was it that moft of thefe ftately buildings were intended for fome facred ufe, being either Temples or * Tombs, all of them dedicated to fome of their Deities. It was an in-bred principle in thofe ancient Heathen, that they could not chule but merit very much by being liberal in their outward fervices. A nd therefore we read of Crefus, that being overcome in a battel, and taken by Cyrus, he did revile the Gods of ingratitude, becaufe they had no better care of him, who had fo frequently F 3 . adored
*As Pjramids, \mathbf{O}. belisks.

Herodor. l. 1. And as they did conceive themfelves bound to part with their lives in defence of their Religion, fo likewife to employ their utmoft power and eftate, about any fuch defign which might promote or advance it. Whereas now, the generality of men, efpecially the wifeft fort amongft them, are in this refpect of another opinion, counting fuch great and immenfe labours to be at the beft but glorious vanities. The temple of Solomon indeed was to be a type, and therefore it was neceffary that it Thould be fo extraordinarily magnificent, otherwife perhaps a much cheaper ftructure might have been as commendable and ferviceable.
2. Palicy, that by this means they might find out imployment for the people, who of themfelves being not much civilized, might by idlenefs quickly grow to fuch a rudenefs and barbarifm, as not to bebounded with. in any laws of government. Again,
Plin.l. 6. 412. by this means the riches of the Kingdom

Cap. I . Mechanical Powers.

dom did not lye idlely in their Kings Treafuries, but was always in motion, which could not but be a great advantage and improvement to theCommonwealth. And perhaps fome of them feared, left if they fhould leave too much money unto their fuccefors, it might be an occafion to infnare them in fuch idle and vain courfes as would ruin their Kingdoms. Whereas in thefe later ages none of all thefe politick incitements can be of any force, becaufe now there is imployment enough for all, and money little enough for every one.
3. Ambition to be known unto pofterity; and hence likewife arofe that incredible labour and care they beflowed to leave fuch monuments behind them, as might * continue for e- *PA. 49. ver, and make them famous unto all 21 . after ages: This was the reafon of Abfalonss Pillar fpoken of in Scripture, to keep bis namse is remembrance. And doubtlefs this too was the end

2Sam. 18.
18. which many others of the Ancients have aimed at, in thofe (as they F 4 thought) thought) everlafting buildings.

But now thefe later ages are much more active and ftirring: fo that every ambitious man may find fo much bufinefs for the prefent, that he fhall fcarce have any leifure to trouble himfelf about the future. And therefore in all thefe refpects, there is a great difproportion betwixt the incitements of thofe former and thefe later times unto fuch magnificent attempts.

Again, as they differ much in their motives unto them, folikewife in the means of effecting them.

There was formerly more leifure and opportunity, both for the great men to undertake fuch works, and for the people to perfect them. Thofe paft ages were more quiet and peaceable, the Princes rather wanting imployment, than being over-prelt with it, and therefore were willing to make choice of fuch great defigns, about which to bufie themfelves: whereas now the world is grown more politick, and therefore more trouble-

Cap. 11. Mecbanical Powers.

 troublefome, every great man having other private and neceffary bufinels about which to employ both his time and means. And fo likewife for the common people, who then living more wildly, without being confined to particular trades and profeffions, might be more eafily collected about fuch famous Employments; whereas now, if a Prince have any occafion for an Army, it is very hard for him to raife fo great a multitude, as were ufually imployed about thefe magnificent buildings. We read of 360000 men that were bufied for twenty years in making one of the Egyptian Pyramids. And H erodotius tels us of 1000000men who were as long in building

Lib. 2. another of them. :About the carriage of one ftone for $A m a f i s$, the diftance of twenty days journey, there was for three years together employed 2000 - chofen men, Governours, befides many other under-labourers. 'Twas the opinion of * Fofephus and Nazi- * Antiq. anzen, that thefe Pyramids were built 1.2. c. 5 . by fofeph for Granaries againft the
years years of famine. Others think that the brick made by the children of Ifrael, was imployed about the framing of them, becaufe we read that the Tower of Bubel did confift of brick or artificial ftone, Gen. 1r. 3. And if thefe were the labourers that were bufied about them, 'tis no wonder though they were of fo valt a magnitude ; for we read that the children of Ifral at their coming out of E gypt, were numbred to be fix hundred throufand, and three thoufand, and five hundred and ify men, Num.I. 46 . fo many handfuls of earth would almoft make a mountain, and cherefore we may eafily believe that fo great a mudieude in fo long a ppace as their bondage lafted, for above four hundred years, might well enough accomplifh fuch vaft defigns.

In the building of Solomon's Temple, there were threefcore and ten thoufand that bare burdens, and fourfcore thoufand hewers in the mountains, \mathbf{x} Kings $5: 15$.

The Ephejian Temple was built by

Cap. 1 I. Mecbanical Powers.

all Afa joyning togecher, the 127 pillars were made by fo many Kings according to their feveral fucceffions; the whole work being not finifhed under the fpace of Two hundred and fifteen years. Whereas the tranfplacing of that Obelisk at Rome, by Sixt tus the fifth, (Spoken of before) was done in fome few days by five or fix hundred men; and as the work was much lefs than many other recorded by Antiquity ; fo the means by which it was wrought, was yet far lefs in this refpect than what is related of them.
2. The abundance of wealth which was then ingroffed in the poffeffion of fome few parcicular perfons, being now diffufed amongtt a far greater number. There is now a greater equality amongit mankind; and the flourifhing of Arts and Sciences hath fo ftirred up the fparks of mens natural nobility, and máde rhem of fuch active and induftrious fpirits, as to free themfelves in a great meafure, from that flavery, which thofe former and wilder wilder Nations were fubjected unto. In building one of the Pyramids, there was expended for the mainenance of the labourers with Radio and Onyons, no left than eighteen hundred talents, which is reckoned to amount unto 1880000 Crowns, or thereabouts. And confidering the cheapness of there things in thole times and places, fo much money might go farther than a fum ten times greater could do in the maintenance of fo many now.
In Solomon's Temple we know how the extraordinary riches of that King, the general flourishing of the whole State, and the liberality of the people did jointly concur to the building of

De bell.
Jud. I. 6. cap. 6. the Temple. Pecuniarum copra, © populi largitus, major dictu conabatur (faith fofephus). The Rhodian Coloffus is reported to have colt three hundred talents the making. \cdots And fo were all thole other famous Monuments of proportionable expence.

Parcirollus f peaking of thole Thea tres that were erected at the charges

Cap. II. Mechanical Powers. of fome private Roman Citizens, faith thus, Noftro: hoc feculo vel Rex fatis baberet quod ageret adificio ejufmodicerigendo; and a little after upon the like occafion, Res:mehercule miraculofa, qua sioftris temporibus vix à poteritifimo aliquo rege poffit exbiberi.
3. Add unto the two former confiderations that exact care and indefatigable induffry which they beftowed in the raifing of thofe ftructures: Thefe being the chief and only defigns on which many of them did employ alltheir beft thoughts and utmolt endeavours. Cleopes an Egptian King is reported to have been fo defirous to finifh one of the Pyramids, that having fpent all about it he was worth, or could poffibly procure, he was forced at laft to prottitute his own daughter for neceffary maintenance. And we read of Ramifes another King of Egypt, how that he was fo careful to erect anObelisk, aboutw hich he had Plin. $1 .{ }^{66}$.
c. 9 . employed 20000 men, that when he feared left through the negligence of the artificers, or weaknefs of the en-

$$
\text { gine }_{2}
$$ gine, the ftone mightis fatl and break, he ryed his own fon to the oop of it, that fo the care of his fafert might make the workmen move circamfpect in their bufinefs. And what flrange matters may be effected by the meer ditigence and labour: of great multitudes, we may eafly dificern from the wild Indians, who having not the ant or adwantage of Engines, did yet by their unwearied indultry remote ftones of an incredible greathefs. Asoffarelates,

Hiftor. Ind. 1. 6. c. 14 that he himfelf meafured one at Tian gwanaco, which was thirty eight foot long, eighteen broad, and fix thick; and he affirms, that in their ftatelieft Edifices, there were many other of much vafter magnitude.

From all which confiderations it may appear, That the ftrangenefs of thofe ancient momuments above any that are now effected, does not necerfarily infer any defet of Are in thefe later Agces. And I conceive, it were as eaffe to demonftrate the Mechanical Arts in thefe times to be fo far beyond the knowledge of former ages, that had we but the fame means as the Ancients had, we mighteffect far greater matters than any they attempted, and that too in a Chorter fpace, and with lefs labour.

C A Pi XII.

Concerning the force of the Mechanick faculties,particularly the Baltañce and Leaver. How they may be contrived to move the whole world, or any other conceivable weight.

ALL thefe magnificent works of the Ancients before fecified, are fcarce confiderable in refpect of Art, if we compare them with the famous fpeeches and acts of Arabimedes: Of whom it is reported, that he was frequently wont to fay, how that he could move, Datum pondus cum datâ potentia, the greateft conceivable: weight, with the leaft conceivable power: and that if he did but know where to ftand and faften his initrument, he could move the world, all.
this this great Globe of fea and land; which promifes, though they were altogether above the vulgar apprehenfion or belief, yet becaufe his acts were fomewhat anfwerable thereunto, therefore theKing of Syracufe did enact a law whereby every man was bound to believe what ever Archimedes would affirm.
'Tis eafie to demonftrate the Geometrical truth of thofe ftrange affertions, by examining them according to each of the forenamed Mechanick faculties, every one of which is of infinite power.

To begin with the two firf of them, the Ballance and the Leaver, (which I here joyn together, becaufe the proportions of boch are wholly alike) 'cis certain, though there fhould be the greateft imaginable weight, and the leaft imaginable power, (fuppofe the whole world, and the ftrength of one man or infant) yet if we conceive the fame :idifproportión betwixt their feveral diltances in the former faculties from the futciment or center of gravity,

Cap. 7iz. Mechanical Popers.
 vity, they would both equiponderate.

81 And if the diftance of the power from the center, in comparifon to the diftance of the weight, were but any thing more than the heavinefs of the weight is in refpect of the power, it may then be evident from the former principles, that the power would be of greater force than the weight, and confequently able to move it.

Thas if we fuppofe this great globe at \dot{A}, to G con-
contain 24000000006000000000000 pounds allowing a hundred pound for Static. 1.3. each cubical foor in it,: (as Stevinius prop. 10. hath calculated) yet a man or child at D, whofe ftrength perhaps is but equivalent to one hundred, or ten pounds weight, may be able to outweigh and move it, if there be but a little greateridifproportion betwixt the two diffances $C D$, and $C B$, than there is betwixt the heavinefs of the weight, and the frength of the power ; that is, if the diftance $\dot{C D}$, unto the other diftance $C B$, be any thing more than 2400000000000000000000000 unto 100 or 10 , every ordinary inftrument doth include all thefe parts really, though not fenfibly diftinguifhed.

Under this latter faculty I did before mention that engine by which

Lipfius Poliorcet. 1. т. Dialog. 6. Arcbimedes drew up the Roman Ships at the fiege of Syracife. This is ufually ftyled Tollenon, being of the fame form with that which is commonly ufed by Brewers and Dyers, for the drawing of water. It confifts of two pofts,

Cap. 12. Mechanical Powers.

 ports, the one faftned perpendicularly in the ground, the other being jointed on crops to the top of it. At the end he faftned a ftrong hook or grapple of iron, which being let over the Wall, to the River, he would thereby take hold of: the Ships, as they gaffed under, and afterwards by applying forme weight, or perhaps the force of Screws to the other end, he would thereby lift them into the open air, where having fringed them up and down till he had Shaken out the men and goods that were in them, he would then dafh the Veffels againft the rocks, or drown them in their fudden fall: infomuch that Marcellus, the Roman General, was wont to fay,

Plutarch in his lifo.

Apxuńor, That Archimedes made ufe of his Ships, inftead of Buckets, to draw water with.

This faculty will be of the fame force, not only when it is continued in one, but allow when it is multiplied in divers inftruments, as may be conceived in this other form, which I G 2
 to not meation; as if it could be ferviceable for any motion (fince the fpace by which the weight would be moved, will be fo little as not to fall under fenfe) but only for the better explication of this Mechanick principle, and for the right underftanding of that forse arifing from multiplication in the other faculties, which do all depend'upon this. The Wheel, and Pulley, and Screw, being but as fo many Leavers of a circular form and motion, whofe ftrength may therefore be continued to a greater face.

Imagine the weight A to be an hun. dred thoufand pounds; and the diflance of that point, wherein every Loaver touches either the weight or one another, from the point where they touch the prop,' to be but one
fuch

Cap. 12. Meclianical Powers.

fuch part, ; whereof the remainder contains ten, then according to the foumer grounds $1000 \mathrm{blat} B \zeta$ wilde gutiponderate to 4 ; which is i obvoo; Io that the fecond Leaver hathibut \$qpoo pounds to mover : Now becaufe this obferves the fanse proporajoms with the other in the diftances of its feveral points, therefore 1000 pounds at C, will be of equal weight to the former: And the weight at C, being but as a thoufand pound, that which is but as a hundred at D, will be anfwerable unto it; and fo ftill in the fame proportion, that which is but 10 at E, will be equal to 100 at D; and that which is but one pound at F , will allo be equal to ten at E. Whence it is manifeft, that I pound at F, is equal to 100000 at A; and the weight muft always be diminifhed in the fame proportion as ten to one, becaufe in the multiplication of thefe Leavers, the diftance of the point, where the inftrument touches the weight, from that where it touches the prop, is but as one fuch
 part whereof the remainder contains ten. But now if we imagine it to be as the thoufandtrt part, then muft the weight be diminifithd according to this proportion; and then in the fame mul tiplication of Leavers, l :will be equal to 1000000000000000 pounds:; 10 that though we fuppofe the weight to be never lo heavy,' yet let the difproportion of diftances be greaver, or the Leavers more, and any little power may move it:

C A P. XIII.

Of the Wheel, by multiplication of whith it is eafie to move"any imaginable peight,

THE Wheel,or axis in peritrochbio, was before demonftrated to be of equivalemt force with the former faculties. If we conceive the fame difference betwixt the Semidiameter of the wheels or fpokes $A C$, and the

Cap. 13. Mechavical Powers.

and the ftrength of a man, it may then be evident, that this frength of one man, by the help of fuch an inftrument, will equiponderate to the weight of the whole world. Aid if the Semidiameter of the wheci: $A C$, be but any thing more in refpect of the Semidiameter of the axis $A B$,then the weight of the world fuppofed at D, is in comparifon to the ftrength of a man at C; it may then be manifeff from the fame grounds, that this Itrength will be of fo much greater force than the weight, and confequently able to move it.

The force of this faculty may be more conveniently underftood and \mathbf{u} fed by the multiplication of feveral whẹels, together with nuts belonging junto each of them; as it may be eafily experimented in the ordinary Jacks that are ufed for the roafting of meat, which compnonly confift but of three wheels ; and yet if we fup. pole a man tyed in the place of the weight, it were eafie by a fingle hair

How to
pull a man
above
ground faltaed unto the fly or ballance of the gle bair.

G 4
 Jack, to draw hina up from the ground, as will be evident from this tollowing figure.

Digitiéd by Google

Gap. 13. Mechanical Powers.

Where fuppofe the length of the flye or ballance in comparifon to. the breadth of its axis, to be as 10 to one, and ' fo for the three other whecls in refpect of the nuts that belong unto them; (though this difference be oftentimes lefs, as we may well allow it to be) withall fuppole the weight (ora man tyed in the place of it) to be a hundred pounds: I fay, according to this fuppofition, it is evident that the power at the ballance, which frall be equal to the weight, need be but as it to 10000 . For the firft axis is concieved to be but as the tenth part of its wheel ; and therefore though the weight in it felf be as 10000, yet unto a power that hath this advantage; ir is but as roo0, and therefore this thoufand unto the like power at the feccond wheel, will be but as roo, and this 100 at the third but as 10 ; and laftly, this ten at the ballance but as one. But the weight was before fuppofed to be 100 , which to the firlt wheel will be but 10 , to the. fecond as one, to the third as a deci-

mal, or one tenth, to the fails as one hyndredth part:: fo that if the hair be buy frong enough to lift mom, that is one ten thoufandrh part of a man, or (Which is all one) one hundreth part of a ppond, it may as well ferve by the heploof this Inftrument for the drawigoof him up. And though therebe not ditogerher fo great a difproportion betwixt the feveral parts of a Jack, (as. ig ropny , erhaps there is not) ; and thonghia a man may be heavier than is he:efuppofed; yet 'tis with all confi, derable; that the ftrength of a hair is. abte to bear much more than the hup.dredth part of a pound. Lpon this ground Merfennus tells. uf, put of Solomen de Cavet, that if there were an engine of 12 wheels. each of them with teeth as alfo the axes or nuts that belogg unto them, ifthe Diameter of thefe: wheels were unto each axis, as a hundred to one: and if we fuppofe thefe wheels to be fo placed, that the teeth of the one might, take hold of the axis that belangs unto the next ; and that the axis \rightarrow Google

Cap. 13. Merthanicil Powers.
of the handle may turn the firft wheed, and the weight be tyed unto the axis of the laft; with fuch an engine as this, faith he, a child (if he could ftand any where witБ̄̈ut this earth) might with much eafe move it towards him.
For according to the former fuppoftion, that this Globe of fea and land, did contain as many: hündred pounds, às it doth cubical feet, viz. 240000 C 0000000000000000000 , it may be evident that any ftrength, whofe force is but equivalent to 3 pounds, will by fuch an engine beable to move it.

Of this kind was that engine fo highly extolled by Stevinius, which the calls Pancration, or Ommipotent, preferring it before the invemions of Archimedes. It corifited of wheels and nuts, as that before fpecified is fuppofed. Hither alfo Thould be refetred the force of racks, which ferve for bending 'of the frongeft bows, as alfo that ittele pocket-engine wherewith a man may break or wrench o.

Ramilli.
Fig. $160 . ;$ pen any door, together with divers the like inflruments in common ute. ir:

CA P. XIV.

Concerning the infinite frength of Wheels, Pulleys, aud Screws.. I; ;at it is pofible by the multiplication of :chefs, to pull up any Oak by the roots with a hair, lift trip with a frapup, or blow if up with owes breath, or to perform the greateft labour with the leif power.

FRom what hath been before delivered concerning the nature of the Pulley, it is eafie to underftand, how this faculty aldo may be proportioned betwixt any weight, and any power, as being likewife of infinite Itrength.

* 7000 faith
Zetzes Chiliad Hist. 35.
${ }^{\circ}$ This reported of Archimedes, that with an engine of Pulleys, to which he applyed only his left hand, he lifted up* poco bushels of Corn at 2. once, and drew a hip with all its la$\overbrace{\square}^{\sim}$ ding

Cap. 14. Mechanical Powers. ding upon dry tand. This : engine zetzes calls Trispatum, or Txifpaffum, which fignifies only a threefold Putley. But herein he doth evidently miftake ; for' 'ris not poffible that this alone fhould ferve for the motion of fogreat a weight, becaufefuch an ent gine can butmake a fubfextuple; or at mofta fubfeptuple proportion betwixt the weight and power, which is much tookitle to reconcile the ftrength of a man unto fo much heavinefs. Therei fore Vbaldus doth more properly ftyle it Poly Pafoton, or an ingtrument of many Pulleys: How many, were éafie to find out, if we did exactly know the weight of thofe ancient meafures; fuppofing them to be the fame with our buhel in England, which contains 64 pints or pounds, the whole would amount to 320000 pounds, half of which would be lightned by the help of one Pulley, three quarters by two Pulleys, and fo onward, according to this fubduple, fubquadruple, and fubfextuple proportion: So that if we conceive the ftrength

Praf. ad. Mechan. of the left hand to be equivalent unto 20 or 40 pounds, it is is eafie to find out how many Pulleys, are required to inable it for the motion of fo great a weight,

Comment.in Gen.c. i.v. 10. art. 6.

Praf. ad Michan. Anjfotle.:

Upon this giound, Mer fennies tells us, that any little child with an engine of hundredidouble Pulleys, might eafily move this great Globe of carch, though it were much heavier than it is. And in reference to this kind of engine (faith Monanthalius:) girg we to underfland that affertion of Anahimedes (as he more immediately intended it) concerning the poffibili: ty of moving the World.

The Wedg was before demonitrated to be as:a double Vectis or Leaver, and therefore it would be needlefs' to explain particularly how this likewife may be contrived of infinite force.

The Screw is capable of multiplication, as well as any of the ather faculties, and may perhaps be more ferviceable for fuch great weights, than any of the ruft. Archimedes his engine

Cap. i4.: Mechanical Poobers.
engine of greatent frength; called Cbariftion , is by fome thought.to confift of thefe. Axis babebat arm infinitiscochleis. And that other engine: of his called Helix (mentioned by * Athenaus) wherewith he lifted Hieno?s great fhip into the fea, without any other help; is moft likely to be framed of perpetual fcrews, faith Rivaltus.
oWhence it may evidently appear, that each of thefe Mechaplick faculties are of infinite power, and 'may be contrived proportionable unto any conceivable weight : And that no ratural ftrength is any way comparable unto thefe artificial inventions.

Tis reported of sampfon, that he could carry the gates of a City upon his fhoulders, and that the ftrongeft $3 u d g .15$. bonds were: unto him but as flax burnt with fire; and yet his hair being fhaved off, all his ftrength departed from him. We * read of Milo, that he could carry an Oxe upon his back, and yet when he tried to tear an Oak afun-
*A. GelNoct. Art. 1.15. c.16.
der,
der, that was fometwhat riven before, having drawnit ta its utmoft, it fuddenly joyned together again, catching his hands in the cleft, and fo ftrongly manacled him, that he became a prey to the wild beaifts.

But now by thefe:Mechanical contrivances, it were eafie to have made one of Sampfon's hairs that was fhaved off, to have been of more ftrength than atl of them when they were on. By the:help of thefe artsit is poffible (as I fhat demonftrate) for any man to lift up the greatef Oak by the roots with a ftraw, to pull it upwith a hair, or to blow it up with his breath.

Suppofe the roots of an Oak to extend a thoufand foot fquare, (which is almoft a quarter of a mile) and forty foot deep, each cubical foot being a hundred pound weight; which though it be much beyoud the extenfion of any tree, or the weight of the earth, the compals of the roots in the ground (according to commor opinion) not extending further than the branchos of is in the air, and the depth

Cap. I4: Meetbinital Powers.

 which the greatelt rain doth not penetrate (faith* $\boldsymbol{S}_{\text {eneca }}$). Ego vinearusn diligens foffor affrmo nullam pluviam effe tam magnam, que terram isltra deicems pedes in altitudizem madefaciat. And becaufe the root muft receiteits nourifhment, from the help of fhowers, therefore it is probable that it doth not go below them. So that (I fay) though the proportions fup. poled do much exceed the real truth, yet it is confiderable that fome great overplus mult be allowed for that labour which there will be in the forcible divulfion or feparation of the parts of the earth which are consinued.\because According to this fuppofition, the work of forcing up the Oak by the roots will be equivalent to the lifting up of 4000000000 pound weight; which by the advantage of fuch an engine, as is here defcribed, may be deafily performed with the leaft conceivable power.

8
 'Archimedes; or's Libe Ii

Cap. 14 . Mechanical Popbers.
Thte whale force of this engine doth confift in two double Pulleys, t twelve wheels, and a fail: One of there Pulleys'at the bottome will diminiof half of the weight, fothatir fhall be but as 2000000000 , and the other Pulley will abate ${ }^{\frac{3}{4} \text { th }}$, ters of it; fo that it hall be but as 1000000000. And becauf the beginning of the fring being faftned unto the lower Pulley, makes the power to be in a fubquintuple proportion unto the weight, therefore a power that fhall be as 1000000000 , that is, a fubquadruple, will be fo much ftmonger than the weight, and confequently able to move it. Now fuppofe the breadth of all the axes and nuts, to be unto the Diameters of the wheel as ten to one; and it will then be evident, that to a power at the firt wheel, the weight is butias 100000000 . To the fecond as 10000000 . To the third as 1000000 . To the fouth as s00400:s To the fifth as i0000. To the fixth as 1000 . To the feventh as or, To the eighth as row the ninth as vin trol the tenthas ${ }_{10}$ onne decimal: The thelelkventias $\frac{10}{100}$ the twelfth adino IAnd the failes yet lefs:" So that if the ftrengch of theftraw, or hair, or breath, be but equal to the weight of one thouifandth part of a pound, it may be of fufficient force to pull up the Oak.
If in this engine we fuppofe the difproportion berwixt the whoels and nuts, tobe as an mundred to one, then it is very evident, that the fame ftrength of breath,or a hair, or a ftraw, would be able to move the whole world, as will be eafily found by calculation. Let this great Globe of fea and land be imagined (as before) to weigh to many hundred pounds as it contains cubical feet; ; mamely. 2400600000000000000000080 pounds. This will be to the firlt Pulley, 1200000000000000000000000 . To the fe cond lefs than 6opoooppoppoooosoogoponoBut for more ceafie ; and convemiont reckoning, let it be fuppofed to be

This

Capi $14 \times$ Mechdinical Powers. This to the firt wheel will bebut as

iò $1000000000000000000 \rho 000$,
To the fecond as 100000000000000000^{000}.
To the third es 1000000090009008090, . T
Te Pille foutrh as is 00000000000000000 :
To theffifh; in $100500060^{2} 00000$.

To the feventl, 10000000000 .

To the tenth 1009.
To the elevench lop:

Topthe falls, ant riop: ic
So that a power which is nucf lefs than the hundredth part of a pound, will be able to move the world.
isIn: were needfors to fet down any particular explication, how fuch Mechanical frength may be applyedunt6 alt the kinds of tocal motions fincethis, in it felf, is fo facile and obziteis, that evety ordinary Artificer dothytapiciently anderftand it.
\therefore The Species of local violent moti? on-are :by Arifotle reekoned to be thefe four.
-i: H H 3 Pulfo. Turning. Unto fome of which ah thefe artificial operations muft necef farily be reduced, the ftrength of any power being equally appliable unto all of them; So that there is no work impofible to thefe contrivances, but there may be as much acted by this Art, as can be fancied by imagipation.

C A P. XV.

 Concerning the propertion of powiels. avid wioftmefs in Mechaikical motions. LAving already difcourfed concerning the frength of thefe Mochanical Faculties: It remains for the more perfet difcovery of their na tures, that we treat fomewhat concerning thofe two differences of artificial motion:-
Cap. 15. Mechanical Powers.

 $\left\{\begin{array}{l}\text { Slownefs, } \\ \text { and } \\ \text { Swifters. }\end{array}\right.$Without the right underftanding of which, a min thall be expofed to many abfurd miftakes, in attempting of thofe things which are cither in themfelves impofible, or elfe not to be performed with fuch means as are applyed unto them. I may fafely affirm, that many; if not moft miftakes in thefe Mechanical defigns, do arife from a mif-apprehenfion of that difference which there will be bes twixt the Iownefs or fwiftnefs of the weight and power; in comparifon po the proportion of their feveral treogths.

Hence it is, that: \mathbb{O} many engines invented for mines and water-works do fo often fail in the performance of that for which they were intended, becaute the artificers many times do forget to allow fa much time for the working of their engine, as may be proportionable to the difference. betwixt the weight and power that H_{4} belong
belong unto theme wheredas he that rightly underftands thergrounds of this Art, may as eafily inind buce the difference of face and timé; sequized to the motion of the iveight and power, Is he may their differenb ifthengths; and not only tell how any power may. more any weight but alfo in what: a fpace of time it inay móveramy facei or diftasce. $:$. 5 muit ont

If it were poffible tor contrive fuch an invention, whereby ahy conceivabie weight may be moved by any conceivable power, booth whit the fame quicknefs' and:fpeedt (as it is in thofe things which crefe immediately Itirsed by the hand, without the help of any other inftrument) the whorks of nature would be theni too mhich fubjected to the power of att es:and men might be thereby incouraged (with the builders: of Babet, arithe: rebel Gyants) to furch bold defigns as would not becibmo! created being. And thereforet the ywiffora set Prouidence hathfo dorefinedahefehuri mane Arts, that whad anfinvention hath

Capi15. Mecbanical Pooners.

hath in the ftrength of its motion, is abated in theflowne/s of it; and what it hath irr the extraordinary quicknefs of its hotion, mulf be allowed for in the great Arength that is required unto it.

For it is to beobferved as a general rute, -that the fpace of time or place, in which the weight is moved, in comparifon to that in which the power doth move, is in the fame proportion as they themfelves are unto one another.
So that if there be any great difference betwixt the ftrength of the weight and the pâwer, the fame kind of difference will there bein shefynar cesiof their, motion:
\because Toilluftrate this by ian examples:"

ome ather	
:"unaras	
aipander and	
w6.	

106 Archimedes; or, Lib. I,

Let the line $G A B$, reprefent a ballance or leaver, the weight being fuppofed at the point G, the fulciment at 4, and the power fuftaining the weight at B. Suppofe the point G, unto which the weight is faltned, to be elevated unto F, and the oppofite point B, to be depreffed unto C; 'tis evident that the arch FG, or (which is all one) $D E$, doth thew the face of the weight, and the arch $B C$, the motion of the power. Now both

Capi 15: Mechapical Powers.

both thefe arches bave the fanme prot portion unto one other, as there is betwixt the weight and the power; or (which is all ope) as there is betwixt their feveral diftances from the fulciment Suppofe $4 G$, unto $A B$, to be as one unto four, it may then be eprident that $F G$, of $D . E$, will be in the fame proportion unto $B C$. 2 Por as apy two Semídiameters are unto one another, fo are the feveral cizcumferences defrribed by them, as alfo any proportional parts of the fame circumferences. riand as the ${ }^{\text {ancight and power do }}$ thus wiftern the feese of their wotiọns, fáa fikewife in the flownefs of it; "thé one moving' the whole di flance $B C$, in the fame time, "whereind the other paffes only GF. So that the motion of the power from B to c, is four times fwifter than that of the weight from G to F. And shis will it be, if we fuppofe the difproportions to be far greater, whether or po we conceive it, either by ia nimy winuation of the fame inftrument and s.i! : v :in : faualeg, 务 fin the for ate exadiple, or

 power is in it felferfe thaid the weight; by 56 much will the Phiotion of the weight be flower that that of the power: Zaj: ivixd this purpofé 1 mad briefy reuch at ode of the Diasfratho :expreffed before in the twelfth; Chapter, concerrning the mutterficafion of LLearets.

 difruinimp the weighe aceording to a deouple proportion, fo alforito theiy
 motion. For if; we frould conicive the firt twapar: $B ;$ to be betpreffed unso sits llowef, fuppoferten foof, yetstrewesigtic A, woddidnor be rai: fed

Tape In jo mechanical Rowers.

 but a tenth part of tho firft, tape he

 the lat Leaver f, being deprefed, wish pals a prose ispopoo greater, and by a motion, 1pgpog fritter gan the weightafa, front

Thu's are we ta canceivenof all the other faculties, wherein there is conftantly the fame difproportion betwixt the weight and power, if reflect of the faces and flownefs of their motions, as there is betwixt their Several gravities. If the power be'unto the weight but as one unto a hundred, then the face through which the weight moves, will be a hundred times left, and consequently the motion of the weight a hundred times lower than that of the power.

So that it is but a vain and moppet rifle fancy for any one to think that he can move a great weight with a little power in a littlefpace ; put inalk theft Mechanical attempts, that ad vantage Wintage which getten the Ateingth of the intion, nuft be fill allowed for in the Hownels of it.
Though thefe contrivances do fo extremely increate the power, yet they do proportionably protract the time. That which by fuch helps one man may do in a hundred days, may be done by the immediate ftrength of a tundred men in one day:

CA P. XVI.

That it is pofficle to contrive fuch an artiffcial ymotion, as jball be of a Jomnefs proportionable to the swiftnefs of the beavens.

IT werea pretry fubtilty tọenquire after, whether or no it be not porfible to contrive fuch an artificial motion, that hould be in fuch a' propor: tion flow, as the hedeyens are fuppoted to be fwift.

For the exact reflation of whichit it would be requifite that we fhould firft pitch upan fome medium, or in-

Cap. 16. Mechanical Powers. In

 different motion, by the diftance from which, we may judge of the proportions on either fide, whether Hownefs or fwiftnefs. Now becaufe there is not any fuch natural mediwm, which may be abfolutely ftyled an indifferent motion, but that the fwiftnefs and nownefs of every thing, is ftill proportioned either to the quantity of bodies, in which they are, or fome other particular end for which they are defigned ; therefore we mult take liberty to fuppofe fuch a motion, and this we may conceive to be about 1000 paces, or 2 mile in an hour.The ftarry heaven, or 8 th. fphear, is thought to move 42398437 miles is the fame fpace: So that if it may be demonftrated that it is poffible to contrive fuch a motion, which going onina conftant direct courfe, ©hall pafs but the 42398437 part of a mile in an hour, it will then be evidenfy: that an artificial motion may be fow, in the fame proportion as the heavens are fwift. - Wbiv ie was before nanifefted, that actooting to the difference betwrite the weighrand ifle power, fo will the difference be betwixt the flownefs or fwiftnefs of their motions; ${ }^{1}$ whencie it wind follow, that firch an entiz gite ; wherein the weight fhall be 4239843 pounds, and the power that doth equiponderate it, but the 423.98437 part of a pound (which is ${ }^{3}$ eafie to contrive') in this engine the power being fuppofed to move with fach a fwiftenefs, as may be anfwerable to a mile an hour, the weight willpals but the 42398437 part of a mile in the fame fpace, and fó confequently will be proportionably now unto the fwiftnefs of the Heavens.
It is related by our Country-man.

Preface to Euclid. F. Dee, that he and Cardin being both together in their travels, they did fee: an inftrument which was at firt fold: for 20 talents of golds; wherein there: was one wheet, which conitantly mos vith fband amongit the reft; did not finiff one revolution under the fpaida: of feven thoufand years.

But if we farther confider fuch an inftrumeft of wheels as was mentioned before in the 14 Chapter, with which the whole world might be eafily moved, we fhall then find that the motion of the weight by that, muft be much more flow, than the heavens are fwifte For thouth we fuppofe (faith Stevinus) the handle' Defatii of fuch an engine with 12 wheels to be prazt. turned about 4000 times in an hour,' (which is as often as a manis pulfe doth beat) yet in ten years fpace the weight by this would not be moved above $\frac{10}{2 \pi} 2$ of one foot, which is nothing nearfo much as an hairs breadth. And it could not pafs an inch in 1000000 years, faith Merfensus.

The trath of which we may more eafily conceive, if we confider the frame and manner of this 12 wheel'd

Phanoni
Mechav.
prop. 11. engine. Suppofe that in each axis or nut, chere were ten teeth, and on each wheel a thoufand: then the fails of this engine mult be turned a hundred times, before the firft wheel (reckon-

114 Arclimedes ; or; Lib. I. ing downward) could be moved round once, and ten thquifand times before the fecond wheel can finifh one revolution, and fo through the 12 wheels, according to this multiplied proportion.
So that befides the wonder which there is inthe force of thefe Mechar nical motions, the extreme flownefs of them is no lefs admirable; If a man confider that a body would remain in fuch a conftant direct motion, that there could not be one minute of time wherein it did not rid fome fpace, and pals on further, and yet that this body in many years together fhould not move fo far as an hairs breadth.

Which notwithftanding may evidently appear from the former inftance. For fince it is anatural principle, that there can be no penesration of bodies; and fince it is fuppofed, thateach of the parts in this on give do touch one another in their fuperficies, therefore it muf neceflarily follow, that the weight does begin and

Cap. 16. Merbantical Poibers.

 and continue to move with the power, and (however it is infenfible) yetic is ceftain there muft be fuich a motion fö extremely Mow", as is here fpecified: So futl is this art of rate and incredible fubtilties:I know it is the affertion of carata, Motus valde tardiz, neceffarioquietes babent intermediad. Extreme flow

De ivaric: tafte rariono 1.9. 6.49 : motions have neceffarily fome intermediate ftops and refts: But this is only faid, not proved; and he fpeaks it from fenfible experiments, which in this cafe are fallible. Our fenfes being very incompetent judges of the feveral proportions, whether greatnefs or littlenefs; flowhefs or fwiftnels, which there may be amongt things in nature: For ought we know, there may be fome Orgainical bodies, as much lefs than ours, as the earth is bigger. We fee what ftrange difcoveries of excrete ninute bodeth, (as lice, whes- wimes, inites; and the like) are made by cle MicroCoope, whersin their feveral patts (which are altogether invifible to the perbaps there may be other infects that live upon them as they do upon us. 'Tis certainthat ourfenfes are ex-: tremely difproportigned for comprehending the whole compars and latitude of things. And becaufe, there may be fuch difference in the motion as well as in the magnitude of bodies; therefore though fuch extreme nownefs may feem altogether impoffible to fenfe and common apprehenfion, yet this can be no fufficient argument againt the reality of it . .

CAP. XVII

Of Wriftnefs, how it may be increafed to any kind of proportion. Concers. ing the great force of Archimedes his Enagives. Of the Ballifita.

BY that which hath been already explained concerning the fownels of motion, we may the better underftand the nature of fwiftnefs, both of them (as is the nature of oppofites)

Cap. 17. Mechanical Movers. fits) being produced by contrary causles. As the greatnefs of the weight in refpect of the power, and the great diftance of the power from the fulcimont, in comparifon to that of the weight, does cafe flow motion: So the greatnefs of the power above the weight, and the greater diftance of the weight from the center, in compariIon to that of the power, does caufe a fwift motion. And as it is poffible to contrive a motion unto any kind of flownefs, by finding out an anfwerable difproportion betwixt the weight and power: fo likewife unto any kind of fwiftnefs. For fo much as the weight does exceed the power, by fo mich will the motion of the weight be flower ; and fo much as the power does exceed the weight, by fo much will the motion of the weight be fwifter:

$$
\mathrm{I}_{3} \quad \mathbf{n}
$$

Archimedes; or, Lib. I.

In the Diagram fet down beforc, if we fuppole F to be the place of the power, and C of the weight, the point A being the fulciment or center, then in the fame fpace of time, wherein the power does move from F to G, the weight will pals from C to B. Thefe diftances having the fame difproportion unto one another, as there is betwixt $A F$, and $A C$, which is fuppofed to be quadruple. So that inthis example, the weight will move four

Cap. 17. Mechanical Pomers.

four times fwifter than the power. And according as the power does exceed the weight in any greater difproportion, fo will the fwiftnefs of the weight be augmented.

Hence may we conceive the reafon of that great force which there is in Slings, which have fo mucha greater fwiftnefs, than a fone thrown from the hand, by how much the end of the Sling is farther off from the fhoulder-joynt, which is the center of motion. The Sacred hiftory concerning David's victory over Goliah, may futficiently evidence the force of thefe. Vegetius relates that it was u:fual this way to frike a man dead, ISam. ig: 49.

Lipfins Polior. l. 4. Dialog. 2: and beat the foul out of his body, with. out fo muchas breaking his armour, or fetching blood, Membris integris letbale tamen vulnus important, for ne invidia Sanguisis, boftis lapidis ictus intereat.

In the ufe of thefe, many of the Ancients have been of very exquifite and admirable skill. We read of feven burdred Benjamités left-handed, that could

Judges 20: I 4 fing
fine-aftone at a bairs breadth, and not $\mathrm{m} i f$. And there is the like ftoried of a whole Nation among the Indians, who from their excellency in this art were ftiled Baleares. They were fo

มัธ

Diodor. Sicul. Biblioth. 1.5. L. Fiorus Hiff.l. 3 . cap. 8. 70. Bocmus Aubanus de moribus gentium, 1. 3. ¢. 26 .
${ }^{2}$ Hijf.l. 4.
${ }^{\mathrm{b}}$ Hiffor. Chilias 2. Hiflor. 35. ${ }^{C} L$ i. $2 . c .3$ ${ }^{1}$ Marcellus.
© Hiffor. 1.24 ftrict in teaching this art unto their young ones, Vt cibum puer à matre non accipit, nifo quem ipsâ monftrante percuffit, That the Mother would not give any meat to her child, till (being fet at fome diftance) he c̣ould hit it with flinging.

For the farther illuftration of this fubject, concerning the fwiftnefs of motion, I fhall brielly feecifie fome particulars concerning the engines of War ufed by the Ancients. Among thefe, the moft famous and admirable were thofe invented by Archimedes, by which he did perform fuch ftrange exploits, as (were they not related by fo many, and fuch judicious Authors) would farce feem credible even to thefe more learned ages. The acts of that famous Engineer, are largely fet down by ${ }^{a}$ Polybi-

Cap. 17. Mecbanical Powers. 121 vn, and diversothers. From the firft of whom alone, we may have fufficient evidence for the truth of thofe relations. For befides that he is an -Author noted to be very grave and ferious in his difcourfe ; and does fotemnly promife in one place that he Hiftor 14 juxta iniwill relate nothing but what either he himfelf was an eye-witnefs of, or elfe what he had received from thofe that were fo; I fay, befides all this, it is confiderable, that he himfelf was born not above thirty years after the fiege of Syracufe. And afterwards having occafion to tarry fome weeks in that City, when he travelled with Scipio, he might there perhaps fee thofe engines himfelf, or at leaft take his Information from fuch as were eyewitneffes of their force: So that there can be no colourable pretence for any one to diftruft the particulars related of them.

In brief, the fum of their reports is this: When the Roman forces under the conduct of Marcellus, had laid fiege unto that famous City, (of which which both by .their former fuccef. fess, and their prefent ftrength; they could not chufe bac promife themfelves a fpeedy vittory:) ; yet the arts of this one Mathencatician, notwithftanding all their policies and refo. Jutions, did ftill beat them back totheir great difadvantage. Whether they were near the wall, or farther from it, they were ftill expofed to the force

 multitude of thofe ftones and arrows, which he fhot againft them, was he fyled हxaróvxet, or Briareus. Thole defenfive engines that were made by the Romans in the form of Penthoufes for to cover the affailants from the weapons of the befieged, thefe would he prefently batter in pieces with great ftones and blocks. Thofe hightowers erected in fome of the Thips, out of which the Romans might more conveniently fight with the defendants on the wall, thefe alfo were
fo

Cap. 17: Mechanical Powers.

fo broken by his engines, that no Cannon or other inftrument of Gunpowder, (faith a learned man) had they been then in ufe, could have done greater mifchief. In brief, he did fo moleft them with his frequent and prodigious batteries, that the common foldiers were utterly difcouraged from -any hopes of fuccels.

What was the particular frame and manner of thefe engines, cannot certainly be determined; but to contrive fuch as may perform the like ftrange effects, were not very difficult to any one who is throughly verfed in the grounds of this art. Though perhaps thofe of Archimedes in refpect of divers circumftances, were much more exact and proper for the purpofes to which they were intended, than the invention of others could be; He himfelf being fo extraordinarily fubtil and ingenious above the common fort of men.
${ }^{\prime}$ Tis probable that the general kind of thefe engines, were the fame with thofe that were ufed afterwards
wards among t the Romans and other Nations. Thefe were commonly divided into two forts: ftyled.

$$
\left\{\begin{array}{l}
\text { Ballifte. } \\
\text { Catapulta. }
\end{array}\right.
$$

Vid.Nandxum de Stud.Militar. 1.2
 Béidaciv called alfo at 0 ógonos meé6o. $\lambda \theta$.
Pundibzlus. Petraria?
lib. $3 \cdot$

Both which names are fometimes ufed promifcuoufly; but according to their propriety + Ballifta does fig. nifie an engine for the chooting of ftones', and Catapulta for darts or arrows.

The former of thefe was fitted either to carry divers leffer ftones, or elfe one greateft one. Some of thefe engines made for great ftones, have been proportioned to fo vaft and immenfe a weight, as may feem almoft incredible: which occafioned that in Lucan.

> At faxum quoties ingent verberis iffu Excutitur, qualis rupes quam vertico montis Abfiditit impulua ventorums adjuta vetuffes, Frangit cuntatarumes; nec tautum corpora preffa Exanimat, totos cum $\mathrm{S}_{\text {anguine dijipat artus. }}$

With thefe, they could eafily batter down the Walls and Towers of any Fort. So Ozid.

Quam

Cap. 17. Mechanical Powers. 125

Quam grave ballifta mania pulat onus.
And Statius - Quo turbine bellica quondam, Librati Saliunt portarum in clayffra. molares.
The ftones that were caft from thefe, were of any form, Enormes of Sepulchrales, Milltones or Tomb ftones. Sometimes for the farther annoyance and terror of any befieged place, they would by thefe throwi into it dead bodies, either of men or horfes', and fometimes only parts of them, as mens heads.

Athenaus mentions one of thefe Ballifte that was proportioned unto a ftone of three talents weight, each talent being 120 pounds (faith Vi truvius) fo that the whole will amount to 360 pounds. But it is ftoried of Archimedes, that he caft a ftone into one of Marcellus his Thips, which was found to weigh ten talents. There is fome difference amongft * Authors, concerning what kind of talent this Ihould be underffood, but it is certain

Archit. io.c. ult.
 ката́入aptov.
Plut.Marcell.
*Dav. Rivaltus $\mathbf{C o}$ -meninArchim. O that per.Ext.

Naudens de fludio Milich.2. that in Plutarchstime, (from whom we have this relation) one talent did amount to 120 pounds (faith $\$$ uiddds) according to which account, the ftone it felf was of no lefs than twelve hundred pound weight: A weapon (one would think) big enough for thofe rebel Gyants that fought againft the gods. Now the greatelt Cannon in ufe, does not carry above 64 pound weight; which is far fhort of the ftrength in thefe Mathematical contrivances. A mongft the Turks indeed, there have beenfometimes ufed fach powder-inftruments, as may equal the force of thofe invented by Archimedes. Gab. Naudeus tells us of one bullet hot from them at the fiege of Coinfantinople, which was of above 1200 pound weight; This heaffirms from the relation of an Archbifhop, who was then prefent, and did fee it; the piece could not be drawn by lefs than an hundred and fifty yoak of oxen; which might almoft have ferved to draw away the Town it felf. But though there hath been perhaps fome

Cap. 17. Mecbanical Powers.

one or two Cannons of fuch a prodigious magnitude, yet it is certain that the biggeft in common ufe, does come far fort of that ftrength, which was ordinarily in thefeMechanical engines.

There are divers figures of thefe Ballifte, fet out by Vigetius, Lipfius, Valteuriand others; but being without any ex- Militi.1.ro plication, it is not very facil to difcover c. 4 in what their forces did confift.

I have here expreffed one of them moft eafie to be apprehended; from the underftanding of which, you may the better guefs at the nature of the reft.

That

128 Archimedes; or, LibiJ.

That great box or cavity at A, is fuppofed to be full of fome heavy weight, and is forced up by the turning

Cap. 18: Mechanical Poiners: 129. ning of the axis and fpokes B C. The ftone or bullet to be difcharged being in a kind of fling at D, which wheri the greater weight A, defcends, will be viotently whirled upwards, till that end of the fling at E, coming to the top; will fly off, and difcharge the ftone as the skilfur Artift fhould direct it.

C A Pi XVIII.

Concerning the Catapulta; or Engines for Arrows.

THE other kind of engine was
 which fignifies a fpear or dart, becaufe it was ufed for the fhooting of fuch weapons: fome of thefe were proporIn Greek ax $70 \pi x \times 1$ Tys.
Athonewr Detipef. tioned unto \{pears of twelve cubits long ; they did carry with fo great a force, ut interdum nimio ardore fcintil- Lib.230. lant, (faith Ammianus) that the weapons difcharged from them were tometimes(if you can believe it) fet on fire by the fwiftnefs of their motion.

Lipfius Poliorce: 1.3.Dials.

Diod. Sic. Biblioth. 1. 14. Sardus de Invert Reruml. 2.

2 Chror. 26. 19.
sir Franc. Bacon's Nat. Hif. Exp. 704.

The firf invention of thefe is com? monly acribed to Diony fios the yount ger, who is faid to have made them amongt his̀ other preparations againft Carthuge. But we have good reafon to think them of more anciens ye, becaufe we read in Scripture, that vzziah made in Jerufalem, emgines invented by cunning men, to boot arrows and great fones withal; tho it is-likely-thefe inventions were much bettered by the experience, of afterages. ..

The ufual form of thefe Catapulte, was much after the manner of great Bows placed on Carriages, and wound up by the frength of feveral perfons. And from that great force which we find in leffer Bows, we may eafily ghefs at the greater power of thefe other engines. ${ }^{\text {'Tis }}$ rclated of the Turkifh Bow, that it can ftrike an arrow through a piece of fteel or brafs two inchies thick; and being headed only with wood, it pierces Timber of eight inches. Which though it may leem incredible,

Capi. 8. Mechanical Powers.
ble, yet it is attefted by the experience of divers unqueftionable witneffes. Barclay in his lion animorum, a mani of fufficient credit, affirms, that he was an eye-witnefs, how one of thefe Bows with a little arrow did pierce through a piece of fteel three fingers thick. And yet thefe Bows being fomewhat like the long Bows in ufe amongit us, were bent only by a mans immediate ftrength, without the help of any bender or rack that are ufed to' others.

Some Turkijb Bows are of that ftrength, as to pierce a plank of fix inches in thicknefs, (I fieak what I kavedeen) faith M. Fo. Greaves in his Pyrampdogazaphaz. How much greater force then may we conceive to be imprefled by the Catapult e?
Thefe were fometimes framed for the difcharging of two or three arrows Legether, for hat each of them might beddrected untoa §egeral aim But it - нecreqs eafie tocontrive them after the.

Ilike manner for the carriage of twenty atrows, or more, ap in this figure. $\mathrm{K}_{2} \quad$ Both

* Wbo was Both thefe kiidds of engines when $b_{\text {bfore }}$ fild
Pororetes
they were ufed at the fiege of any This lind of Tur ret was firft ufed at the fiege of Cyprus, and is thus defribed by Diodorus. Sicul. Bib-
- Hioch. 1.20. great wooden Turret (firft invented by * Demetrius). It was driven upon four wheels at the bottom, each of its fides being forty five cubits; its height ninety. The whole was dividedinto nine feveral partitions, every one of which did contain diters en- gines for battery : from its ufe in the battering and taking of Cities it is
ftiled

Cap. 18. Mechanical Powers.

 Atiled by the name of Helepolis. \therefore He that would be informed in the nature of Bows, Jet him confult Mer; fennus de Ballifitica Á Acontifmologia, where there are divers fubtil inquiries and demonftrations, concerning the ftrength required to the bending of them to any diftance; the forck they have in the difoharge, according to feveral bents, the frength required to be in the ftring of them, the feveral proportions of fwiftnefs and diftance in an arrow fhot vertically; or hoorizontally, ortranfieerfally.Thofe ftrange effects of the Tut$k j b$ Bow (mentioned before) fa much exceeding the force of others, which yet require fav greater /ftrength for the bending of them, may probably be caftribed either to the natural caufe of attraction by fimilutude of fubfanse (as the Lond Bacon conjectures); For in thefe experiments the head of the arrow fhould be of the fance fubtance (whether feel or woad) with that which it piercos: Otelfe: to that juft
P_{3} proportion betwixt the
weight

534 Archimetars, or, Libe weight of the arrown andel the ftrdedth. of the bow, whieh murt needs pruch conduce to theitarca of it, ind meny pertiaps be more exactly difcovered pat thefe, that it is eammonly inco

 A Goreparifon bet wint othefe ancient en. A comparifon set int to the ancient En. Sigines, and that Guapowder inptriv -ments nonizupe ur ant ria flit T T fhall notiobentrogethatimperoif norit to inguitefomewhat concerHing the advantages and difadvantaj. ges betwixe thofe Milisairy offenfive engities, ufed amongtt the Appoients, and thofe of thefrelater agesihisil ori: IV Wo which inquiry there aro tiwa pasd ticulars to be chieffy examinedg jiv. Til The force of thefe feiveral cond mivances, or the umpos thad may be doneby them. \because He yons ('x. Their ppitejodrathe greatnels' of the charges requirid nunto them: vt As' for the force of thefes anci? ent

Cap. 19: Mechanical Powers.
 139

 ent inventions, itmay fufficiently appear from thofe many credible nelae tions mentioned before; to which may be added that in fof ephos, whiohs he fets down from his owneyeafight, being himfelf a chief Captainat theDe Bello
Judaico,l.
3. c. 9. fiege of Fotapata, where theferents happened. He tells us; that befocesithie maititude of perfons, who were flain' by thefe Romen Engines, being now able to avoid their force, by reafoh they were placed fo far off, and out of fight; befides this, theyedid alfo carry fuch great fones, with lo gneat a violence, that they did therewith bateer down their!Walls and Towers. A great bellied woman walking about the City ins the day-time, had her child ftruck out of her wamb, and carried half a furlong fromither AToldier ftanding by his Captaibyoffephus, outhe wiat had his head fruckioff by another ftone fene from thefe Roman Einginesi andilhis Brains carried thinet
 To thi purpofe Cardia relates out of Ammianos Marcellinus, Tianto

De variet.
l. 12.c.58: guanvis intalti barbari fucrint ab eo, deffiterunt à pugna \& abierunt. Many foreign people being fo amazed at the Arange force of thefe Engines, that they durlt not conteft with thofe who were mafters of fuch inventions. ?Tis frequently afferted, that bullets have been melted in the air, by that extremity of viplent motion impreft from thefe flings.

Fusdäquse contorto tranfverberat aëria plumbo,
Et mediis liguide glandes in nubibus errant.
So Lucien, fpeaking of the fame Engines.

Inde faces dr faxa volant; Spatioque foluta.
AËris calide liquafača pondere glandes.
Which relations, though they may feem fomewhat poctical and improbable, yet Ariftot le himfelf (De Calọ; lib. 2. c. 7.) doth fuppofe them as unqueftionable. From whence it may be inferred, that the force of thefe Fpe gines

Cap. 19; Mecbanical Popers:
gines does? rather exceed than compo Thort of our Gunpowder invegumos.

Add to this that opinion of a learns. ed man (which I cied before) ghat Archimedes in the fiege of Swacufec, Sirivalt. did more michief with his Engines Ryinghs quan could haye been wrought by ar. ny Cannons, had they been then in ufe. :

In this perhaps there may be fome difadvantage, becaufe thele Mathematical Engines cannot be fo eafily and feeedily wound up, and focertainiy levelled as the other may.
2. As for the price or charges of both thefe, it may be confidered under three particulars :

1. Their making.
2. Their carriage or conveyance.
3. Their charge and difcharging-

In all which refpects, the Cannons.
now in ufe, are of much greater coft
than thefe other inventions.
1.The making or price of there Gunpowder inftruments is extremely ex-: penfive, as may be eafily iudged by the. weight of their materials. A whole, Cannon

158

.24 Archimedter or L Lib: F Canfohteighing cormimonly 80000
 a Deithictlverini' 3 odo which whether it ofe in iron orsials, muft needs bee
放 , ra a very cofly odfy for the matter of shem'ribeftus'the farther charges feb quited Bor the form and mikingesj ab mis theffr, 4 which in the whole riult reeds titirm amount to feveral hundred pounds! arma Whetreás thére Mathétíatical invedtions donfifting chiefly of Timber; and Cords, may be much more cheap ly made ; The feverall degrees 6 f them wiffich flatl thinwer in propbif: tion to the ftrength of thofeotker being at the leaft ten times cheapers that is, ten Engined that fhallibe of equal force either et Cannen or Demicanoon, Capvétila or' Dethiculverim, thay be framed at the fame price that one of the fe will amount to: So that fn this refpect there is a great inequality.
2. As for the Catiage or conveyance; a whotecantioft ddes requira at che leaft 90 ment, of th horfes, fot the drdught ofter ahalf Canion; 6 men,

Capi. 1 a. romertamical Powers.
ment 05 G horfes sia fulveitin goimen, on 8 horfas: 2 a Dequicultaxin 36 men, or $\%$,hofess; Stppefing: the pway to be hard and plaing in which notwithtflanding themotion will be very llowt Bur if the paflege ipyoyerifing and Oeqps of wotentrand dirty; thoir ohcy will require a much greategr ftrength und charge for the conveyance of them. Wharsas, the fer gether invertui ons are in, themfetiver more dightrikif there be occafipil fom the drapght of thema) being dafily talen iafundetineo feveral partss: A Ad, befydes sheirimar terials sane: to de found evarymhers, To that theydneed net bercariied up and down an all, but moy lese eafdy made in tbe place: wheto the arato

3. The materials required to the charging of thefe Gun-powder inftruments are very coftly. A whole Cannon requiring for every charge 49 pounds of powder, and a bullet of 64 pounds; a half Cannon 18 pounds of powder, and a bullet of 24 pounds; a Culverin 16 pounds of powder, and a bullet

Archimedes; or, Lib.I. a builet of 19 pounds; ai pemiculverin 9 pounds of powter and a bultet of 12 pounds: whereas: thofe other Enginess thay be charged only with flones; or (which may ferve for terroury) with dead badies; or any fuch materials as every place will afford without any cof.
Sothor, put all thefe together: If it be fo that thefe ancient inveations did not come Mhort of thefeother in res gard of force, and if they do fo much excel therin in divers othets refpefts; It fhould feem then, that they are much more commodious than thefo heater inventions,' and hhould be preferred beforéthem: But this enquiry cannot be furly determined without particular experience of both.
C A P.

Cap. 20. Mechanical Pobers. 141
 CAPXX.

That it is poffible to contrite "Yyth an artificial motion, as may be equally, Jooft with the luppofed motion of the beavens.

TOR the conclufion of this Dif courfe, 1 hall briefly examine(as before concerning fownefs) whether it be poffibte to contrive fuchan ar= tificial motion, as may be equal unto the fuppoled fwiftneff of the heavens. This queftion hath been formerly propofed and anfwered by Car. dan, where he applies it unto the fwiftnefs of the Moons Orb; but that Orb

Devariet Rerumi.9. c. 47 . being the loweft of all, and confequently of a dull and lluggifh motion, in comparifon to the reft $;$ therefore it will perhaps be more convenient to: underftand the queftioniconcerning the eighth fphere or ftarry heaven.

For the true refolution of this, it would be firft oblerved, that a material fubftance is altogether incapa- ble of fogreat a celerity, as is ufually.
the earith - Planet, prop. 9. afcribed to theqoeleftiatiorbs, (as I have proved elfewhere) And there fore the guxary is not to be underftood for any real and experimental, but only notional and Geometrical contrivance.
 nerye ber thus. increafed, acegrding to eny. conceivable piopertion, will be manifeft from what hath been formerly delivered concerning the grounds and nature of flownefs and fwifrels. For according as we. Thall fappofe the power exceed the weigbt ; Io may the motion of the weight, be fwifter than that of the power.

But to anfwer more panticulat1y: Lep us imagine every wheel in this following figure to have an hundred seatrin it pand every nut ten:

Can 2o. Mechonical Powers.

It may then be evident, that one revol'tion of the firt wheel, will turn the nut, and confequently the fecond Wheel on the fame axis ten times, the third third wheel a hundred fimes, the fourth 1000 times, the fifth 10000 , the fixth a hundred thoufand times, the feventh 1000000 times, the eighth 10 CO 0000 times, the $9^{\text {th }} \mathbf{1 0 0 0 0 0 0 < 0}$ times, the Sails 10000000 co times; So that if we fuppofe the compafs of thefe Sails tobe five foot, or one pace; and that the firt wheel is turned about after the rate of one thoufand times in an hour: It will then be evident, that the fails fhall be turned rove000000006 times, and confequently shall palfs 100000000 miles in the fáme fpace. Whereas a ftar in the $\not \subset q u a t o r$ (according to common Hypotbifis) does move but 42398437 miles in an hour; and therefore it is evident that 'tis poffible Geometrically to contrive fuch an artificial motion, as fhall be of greater fwiftnefs than the fuppofed revolutions of the heavens.

D毛DALUS:

 OR,
Mechanical Motions.

Che 今econd 2 bot.

CHAP: I.
Tibe divers kind of Automata, or Selfmovers. Of Mills, and the contrivance of feveral motions by rarifed air. A brief digreffion concerning windignts. Mongft the variety of artifi. cial motions, thofe are of moft ufe and pleafure, in which, by the application of fome continued flreagth, there is be fowed a regular and lafting motionn. Thefe we call the evtionatio, or felfmovers: which name in its ntmof la titude, is fometimes afcribed unito thofe motions that are contrived from the ftrength of living creatures, as Chariots, Carts, \&cc. But in its fricknefs and propriery; it is coly appliable unto fuch inventions; wherein the mocion is caufed either by Yotriethinity L that elfe by fome external inanimate agent.

Whence thefe quto uara are eafily dittinguifhable into two forts.

1. Thole that are moved by fomething which is extrinfecal unto their own frame, as Mills by water or wind.
2. Thofe that receive their motion from fomething that does beloing to the frame it felf, as Clocks, Watches', by weights, fprings, or the like.

Of both which forts there have been many excellent inventions: In the recital of them, I fhalfinfift chiefly on fuch as are moft minent for their rarity and fubtilty.

Amonglt the \& 8 to fuata that receive their motion fromfome external agent, thofe of more common ufe are Mills.
And firt, the Water-mills, which are thought to be before the other; though neither the firf Author, nor fo much as the time whereirt they were invented is fully known. And therefore Polydor Virgil tefers them amongt other fatherlefs inventions. Pliny indeed doth mention them; as being commonly ufed in his time, and yet others

Cap.' 1! Mechanical Motions.
others affirm that Bellifarius in the reign: of $\mathfrak{F u f t i n i a n}$, did firt invent them: $:$ whence Pancirallus concludes, that it is likely their ufe was for fome fpace intermitted, and being afteri wards renewed again, they were then thought to be firft difcovered.

However 'ris certain, that this int vention hath much abridged and advalataged the labours of men, who were before condemned unto this'fla: very, as now unto the Galleys. And as the force of waters hath been ufeful for this, โo likewife may it be contrived to divers other puypofes. Herein doth the skill of an artificer chiefly confift; in the application of thefe common motions unto various and beneficial ends, making them ferviceable not only for the grinding of corn, but for thepreparing of iron or other oar, the making of paper, the elevaring of water, or the like.

To this purpofe alfoare the Mill's that are driven by wind, which are fo much more convenient than the otherg by haw much their fituations L. 2
Ma Google

De repert. Tit. 22.

Ad Piffri num. may be more eafie and common. The motions of thefe may likewife be accommodated to as various ufes as the other, there being fcarce any las bour, to the perfotmance of which an ingenious artificer cannot apply them. To the fawing of Timber, the plowing of land, or any other the like fervice, which cannot be difpatched the ordinary way, without much zoil and tedioufnefs. And it is a wonderful thing to confider, how much mens labours might be eafed and contracted in fundry particulars, if fuch as were well skilled in the principles and pra: ctices of thefe Mechanical experiments, would but throughly apply their ftudies unto the enlargement of fuch inventions.

There are fome other motions by wind or air, which (though they are not fo common as the other), yet may prove of excellent curiofity, and fingularufe. Such was that mufical
inftrument invented by Gornelius. Drea Vrankhein Epift. ad Joh.Erneftum.
Maercel. ble, which being fet in the fundhine, would of is felf render a foft and pleafant

Cap. 1. Mechanical Motions.

 149 pleafant harmony, but being removed into the fhade would prefently become filent. The reafon of it was this, the warmth of the fun, working upon forme moifture within it, and ratifying the inward air unto fo great an externlion, that it muff needs feel for a vent or iffue, did thereby give feveral moton's unto the inftrument.Somewhat of this nature are the Elipiles, which are concave Veffiels,confifting of come fuch material as may endure the fire, having a final hole, at which they are filled with water, and out of which (when the Yerfils are heated) the air doth iffue forth with a ftrong and laftirig violence. There are frequently ufed for the exciting and contracting of heat in the melting of gaffes or metals. They may alto be contrived to be ferviceab!e for fundy other pleafant ufes, as for the moving of fils in a chimney cor nev, the motion of which fails may be applied to che turning of a Spit, or the like.

But there is a better invention to L 3 this this purpofe mentioned in Cardant, De Variet: whereby a fpit may be turned (withRerum,
li: 12.5 .5 . out the help of weights) by the motion of the air that afcends theChimney; and it may by ufeful for the roafting of many or great joynts: for as: the fire mult be increafed according to the quantity of meat, fo the force of the inftrument will be augmented proportionably to the fire. In which contrivance there are thefe conveniences above the Jacks of ordinary ufe. 1. It nakes little or no noife in the motion.
2. It needs no winding up,but will conftantly move of it felf; while there is any fire ta rarifie the air.
3. It is much cheaper than theother inftruments that are commonly ufed to this purpofe. There being required unto it only a pair of fails, which muft be placed in that part of the Chimney where it begins to be ftraightned, and one wheel, to the axis of which the fpit line mult be faftned, according to this following Diagram.

\because The motion of thefe fails may likewife be ferviceable for fundry other purpofes, befides the turning of a fpit, for the chiming of bells or other mufical devices; and there cannot be any more pleafant contrivance for L_{4} con- continual and cheap mufick. It may be ufefulalfo for the reeling of yarn, the rocking of a cradle, with divers the like domeftick occafions. For (as was paid before) any constant motion being given, it is eafie for an ingenious artificen to apply it unto various fervices. There fails will always move both day and night, if there is but any fire under them, and fometimes though there be none. For if the air with. out, be much colder than that within the room, then mut this which is more warm and ratified, naturally ascend through the chimney, to give place unto the more condenfed and heavy, which does ufually blow in at evety chink or cranny, as experience Hews.

Unto this kind of motion may be reduced all thole reprefentations of living creatures, whether birds, or beats, invented by Ctefibius, which were for the molt part performed by the motion of air, being forced up either by rarefaction, with fire, or elf by comprefion, through the fall

Cap. 1. Mechanical Motions. 153

of fome heavier body; as water, which by poffeffing the place of the air, did thereby drive it to feek for fome other vent.
I cannot here omit (though it be not alcogether fo pertinent) to mention that late ingenious invention of the wind-gun, which is charged by the forcible compreffion of air, being injected through a Syringe ; the ftrife and diftention of the imprifoned air ferving by the help of little falls or Thuts within, to ftop and keep clofe the vents by which it was admitted. The force of it in the difcharge is almoft equal to our powder-guns. I bave found upon frequent trials (faith Mer fensus) that a leaden bullet fhot from one of thefe Guns againft a Phentomena pneumatica, prop. 32. ftone wall, the face of 24 paces from it, will be beaten into a thin plate. It would be a confiderable addition to this experiment which the fame Author mentions a little after, whereby he will make the fame charge of air to ferve for the difcharge of leveral arrows or bullets after one apother,

154 Dadalus, or, Lib. IF.

 nother, by giving the air only To much room, as mayimmediately ferve to imprefs a violence in fending a way the arrow or bullet, and then fcrewing it down again to its former confinement; to fir it for another Thooring. But againft this there may be many confiderable doubts, which I cannot ftand to difcufs.
C A. P. II.
 \% C A. P. II.

 Of a failing Chariot, that may withont hor-Jes be drivex on tbe land by the noinid,
as fhips are on the fea. Of a failing Chariot, that may without hor-
Jes be drivex on the land by the noinit,
as fhips are on the fea. as /bips are on the fea. THE force of wind in the motion HE force of wind in the motion
of fails may be applied alfo to the driving of a Chariot, by which a man may fail on the land as well as by a thip on the water. The labour of horfes or other beafts, which are ufually applied to this purpofe, being artificially fupplied by the ftrength of winds.

That fuch Chariots are commonly

De incremento Urbium, 1. r. c. 0 . T
\qquad
\qquad

Cap. 2. Mechanical Motions: though with what fuccels he doth not Specifie. But above all other experiments to this purpofe, that failingChariot at Sceveling in Holland is more eminently remarkable. It was made by the direction of stephinus, and is cele. brated by many Authors. *Walchizs affirms it to be of fagreat a fwiftnefs for its motion, and yet of fogreat a capacity for its burden. Ut in medio freto $/ e-$ cundis vent is comeniffa naves, velocitate multis parafungis poft fe relinguat, ©r pautarums horartum. (patitio, viginti aut triginta milliaria Germanica continuo carfu emetietur, concreditofg; fibi plus minus vectores fex: aut decem; in: petitum locam tranfferat, facillimo illius ad clavum qui fedet :nutn, quaqua verfum minimo labore velis comimi ifum, mirrabile hoc continenti currus navigium dirizentis. That it did far exceed the fpeed of any fhip, though we Thould fuppofe it to be carried in the open fea with never fo profperous wind: and that in fome few hours fpace it would convey 6 or 10 perfons 20 or 30 German miles, and all this with very little labour of him that fitteth at the Stern,

Dadalus ; or, Lib. II.
Stern, who may eafily guide the courfe of it as he pleafeth. -' That eminent inquifitive man $P e i$ reskius; having travelled to Sceveling for the fight and experience of this Chariot, would frequently after with much wonder mention the extreme fwiftnefs of its motion. Commemar are Pet Caf
fendusi V_{i} folebat $f_{\text {tuporem }}$ quo corrroptus fuermar cure na Peiref- vento tranlatus citati/fimo non perfention kii, 1.2. cere tamen, sesspe tam citus erat quam ventus. Though the wind were in is felf more fwift and ftrong, yet to paff fengers in this Chariot it would not be at all difcernable, becaufe they did go with an equal f wiftnefs to the wind it felf. Men that ran before it, feeming to go backwards; things which feem at a great diftance being prefently overtaken and left bohind. In two hours fpace it would pafs from Sceveling to Putten, which are diftant from one another above 14 Horaria miliaria (faith the fame Author) that is, more than two and forty miles.
Grotius is very copious and elégant in the celebrating of this invention, and the

Cap. 2. Mecbanical Motions. 157 the Author ofit, in divers Epigrams. Ventivolam-Typhis decduxit in aquora navim, fypiter in felles; atherramqwe domum In terrefref folum virtus Stevinia, nam nec Tipby tuum fuerat, nec Jovis ifud opus. And in another place,
Impofuit plauffro vettintem carbafa, malum Anpottius navi, fublidit ille rotas ? -Scandit aques navis currus ruti aere prono, Et merito dicas bic volat, illa natat.
Thefe relations did at the firf feem unto me (and perhaps they will fo to others) fomewhat ftrange \& incredible. But upon farther enquiry I have heard them frequently attefted from the particular eyefight and experience of fuch eminent perfons, whofe names I dare not cite in a bufinefs of this nature, which in thofe parts is fo very common, and little obferved.
I have not met with any Author who doth treat particularly concerning the manner of framing this Chariot, though Grotius mentions an elegant defcription of it in copper by one Geynius : and Hondiws in one of his large Maps of Affa, does give another conjeCtural defcription of the like Chariots ufed in china.

The form of it is related to be very Gmple and plain, after this manner:

- 1res
: 16, ru!
$\therefore \because$
! $\because 9$
!

Cap. 2. Mechanical Motions.

The body of it being fomewhat like a boat, moving upon 4 wheels of an equal bignefs, with two fails like thofe in a fhip; there being fome contrivance to turn and fteer it by moving a rudder which is placed beyond the two hindmoft wheels: and for the ftopping of it this mult be done either by letting down the fail, or turning it from the wind. Of this kind they have frequently inHolland other little V effels for one or two perfons to go upon the ice, having fledges inftead of wheels, being driven with a fail ; the bodies of them like little boats, that if the ice fhould break, they might yet fafely carry a man upon the water, where the fail would be ftil ufefulfor the motionof it.
I have often thought that it would be worth the experiment to enquire, whether or no fuch a failingChariot might not be more conveniently framed with moveable fails, whofe force may be impreft from their motion, equivalent to thofe in a Wind-mill. Their foremolt wheels (as in other Chariots) for the greater facility, being fome what lower than the other, anfwerable to this fig.

Cap. 2. Mechanical Motions:

In which the fails are fo contrived; that the wind from any Coaft will have a force upon them to turn them about, and the motion of thefe fails muft needs turn the wheels, and confequently carry on the Chariot it felf to any place (though fully againft the wind) whither it thall be directed.

The chief doubt will be, whether in fuch a contrivance every little ruggednefs or unevennefs of the ground, will not caufe fuch a jolting of the Chariot as to hinder the motion of its fails. But this perhaps (if it fhould provefo) is capable of feveral remedies.
I have often wondred, why none of our Gentry who live near great Plains, and fmooth Champains, have attempted any thing to this purpofe. The experiments of this kind being very pleafant, and not coftly. What could be more delightfal or better husbandry; than to make ufe of the woind (which cofts nothing, and eats nothing) inftead of borfes? This being very cafie to be effected by thofos, the convenience of whofe habitations doth accomnodate them for fuch experiments.

C A.P. III.

Concerning the fixed Automata, Clocks, Spheres, reprefenting the havexly mations: The feveral excellencies that are moof commendable in Jugh kind of contrivances.
THE fecond kind of iurouata were defcribed to be fuch Engines, as did receive a regular and laiting motion from fomething belonging to their own frame, whether weights, or fprings, ©rc.

They are ufually diftinguifhed into cutómatra,

Sraire, fixed and ftationary.
Yiтrújgvza, mavable and tranfient.
r. The fixed are fuch as move only according to their feveral parts,and not according to their whole frame; In which, though each wheel hath a diftinct rotation, yet the whole doth ftill remain unmoved. The chiefeft

Cap. 3. Mechanical Motions.

kind of thiefe are the Clocks and Watches in ordinary ufe, the framing of which is fo commonly known by every Mechanick, that I fhall not trouble the Reader with any explica. cation of it. He that defires fuller fatiffaction, may fee them particularly defcribed by *Cardan; + D. Flood, and others.

The firf invention of thefe (tairt Pancirolius) was taken from that ex. periment in the multiplication of wheels mentioned in Vitruvius, where he fpeaks of an inftrument whereby a man may know how many miles or paces he doth go in any face of time; wherher or no he do pafs by water in a boat or dhip, or by land in a Chariot or Coach: they have been contrived alfo into little pocketinftruments, by which after a mian hath walked a whole day together; he may eafily know how many fteps he hath taken. I forbear to enter upon a larger explication of thefe kiñd of Engines, becaufe they are impertinent unto the chief bufinefs that M

* De vaits
oc.Rer1. g :
c. 47.
+ Trael.
part 7.1.i.
cap.
Repetit.
tii. 10 :
Architete

1. 10.c. 1%

164 Dedalus; or, Lib. II.
1 have propofed for this ${ }^{\circ}$ difcourfe. The Reader may fee them more particulary defribed in the above-cited Flace of Vitruvius, in *Cardan. \dagger Bef*Subtil. Somius, and others; I have here only 4 Theatrum in-Itrumentorum.
Weekerde fecret. J. mentioned them, as being the firft occafion of the chiefeft avrougre that are now in ufe.

Of the fame kind with our Clocks 15.c. 32. and Watches (though perhaps more elaborate and fubtil) was that fphere

Mention" ${ }^{\text {ed by }}$ Cicero. Tuf reprefent the heavenly motions: the cul.Quaft. diurnal and annual courfes of the l. s. item - De Nat. Deoram 1 . 2.
> *The foicret force from which the motion ous impreffed. invented by Archimedes, which did Sun, the changes and alpects of the Moon, \&c. This is frequently celebrated in the writings of the Ancients, particulary in that known Epigram of Clamdian:

Jupiter in parvo cum cerneret æethera vitro, Rifit, \& ad Superos talia diêa dedit; Huccine mortalis progreffa potentia cura? Jam mens in fragili luditur orbe labor. Jura poli, rerumque fidem, legefqueDeorum, EcceSyraculius tranftulit arte fenex. Inclufus variis famulatur ${ }^{*}$ piritus aftris, Et vivum certis motibus urget opus.

Cap. 3. Mecbanical Motions.

Percurritproprium mentitusSignifer annum;
Et fimulata novo Cyishia menfe redit.,
Jamq; fuum volvens audax induftria mundū
Gaudet \& humanà fidera mente regit.
Quid falfo infontem tonitru Salmonea miror?
Æinula naturx parva reperta manus. Excellently Tranflated by T. Randolpb.

Jove Saw the beavens fram'd in a litle Glafs, $^{\text {a }}$ And laughing, to the gods thefe mords did paff; Comes then the power of mortal cares S_{0} far ? In brittle Orbs my labeurs afted are. The fatutes of the Polbs, the faith of things, The laws of Gods, this Syracufian brings Hither by art ; Spirits ixcles'd attend Their feveral fpheres, and mith Set motions bend The living work; eath year the feigned Sun, Each month returns the counterfeited Moon. And viewing now ber woorld, bold indufry Grows proud, to know the beavens his fubjects be. Believe, Salmoneus häthfafe tbunders thrown, For a poor band is natures rival gromn.
But that this Engine fhould be made of glafs, is fcarce credible. Lactantius mentioning the relation of it, affirms it to confift of brafs, which is more likely. It may be the outfide or cafe was glafs, and the frame it felf of brafs. Caelius Rhodoginus, fpeaking of Antiq eft the wonderous art in the contrivance $1,2 . \cos 16^{\circ}$ M 3

Inftit.1.2.
c. 5. of this fphere, breaks out. into this

Guid. \boldsymbol{U} beldous praf. od Mechan.

Colleff. Matheim. Pratm. ad 7. $8:$ quare; Nonne igitur miraculbrum omnium maximum miraculumeft homo? He might have faid Matbematicus: And another to this purpofe, Sic manus ejus maturam, ut natura ip f a manum imitata putetur. Pappus tells us, that Archimedes writ a Book de Spberopaia, concerning the manner of framing fuch Engines; and after himPofidonius compoled another difcourfe on the fame fubject, though now either the ignorance or the envy of time hath deprived us of both thofe works. And yet the art it felf is not quite perifhed; for we read of divers the like contrivances in thefe latter times. Agrippa affirms, that he himfelf had feen fuch a Iphere; \& Ramus tels us how he beheld two of them in Paris, the one brought thither amongt other fpoils from Sicily, and the other out of Germany, And it is commonly reported, that there is yet fuch a fphere at Sinaf. burgh in Germany. *Rivaltus relates how MarinusBurgefius, a Norman,made two of them in Frapce for the King

Cap. 3. Mechanical Motions.

And perhaps thele latter (faith he) were more exdet than the former, becaufe the heavenly revolutions are now much better underftood than before And befides, it is queltionable, wherher the ufe of fteel-fprings was known in thofe ancient times; the application of which unto thefe kind of fpheres, muft needs be much more convenient than weights.
'Tis related alfo of the Conful Boethius, that amongft other Mathe: matical contrivances, (for which be was famous) he made a fphere to reprefent the Suns motion, which twas fo much admired, and talked of in thofe times, that Gundibaldus King of Burgundy, did purpofely fend over Embaffadors to Theodoricus the Emperor, with intreaties that he would be a means to procure one of thefe \{pheres from Boethius ; the Emperor thinking hereby to make his Kingdom more famous and terrible unto foreign Nations, doth write an Epifle to Boetbius, perfwading him to fend this inftrument. Quoties non \int ant credituri M 4 guad

Caffiodor:
Clron.Pet.
Bertius.
Praf.ad Confolat. Philef. tem Iuforia fomnia putabust'? Et quawdo fuerint à flupore converff, non audebr:xt fe aquales nobis dicere, apud guos fiumt fapiestes talia cogitaffe. So much were all thefe kind of inventions admired in thofe ruder and darker times; whereas the inftruments that are now in ufe amongit us (though not fo much extolled) yet do altogether equal (if not exceed) the other both in ufefulnefs and fubtilty. The chief-
poledyire gil, de invent.rerum l. 2.c. 5 . Candan. swbel.l. 17. eft of thefe former Engines receiving their motion from weights, and not from fprings, which (as I faid before) are of later and more excellent invention.

The particular circumftances for which the Automata of this kind are moft eminent, may be reduced to thefe four.

1. The laftingnefs of their mation, without needing any new fupply; for which purpofe there have been fome Watches contrived to continue withput winding up for a week together, or longer,

2. The

169
2. The, eafinefs and fimplicity of their compofition ; Art it felf being but the facilitating and contracting of ordinary operations; therefore the more eafie and compendious fuch inventions are, the more artificial fhould they be efteemed. And the addition of any fuch unneceffary parts, as may be fupplied fome other way, is a fure fign of unskilfulnels and ignorance. Thofe antiquated Engines that did confift of fuch a needlefs multitude of wheels, and fprings, and fcrews, (like the old bypothefis of the heavens) may be compared to the notions of a confufed knowledg, which are always full of perplexity and complications, and feldom in order; whereas the inventions of Art are more regular, fimple and perfpicuous, like the apprehenfions of a diftinct and thoroughly informed judgment. In this relpect the manner of framing the ordinary -Automata, hath been much bettered in thefe latter times above the former, and Shall hereafter perbaps be yet more advantaged. other humane arts) receiving additions from every days experiment.

To this purpofe there is an inven. tion confifting only of one hollow orb or wheel, whereby the hours may be as truly diftinguifhed, as by any ordinary clock or watch. This wheel fhould be divided into feveral cavities, through each of which fucceffively either fand or water muft be contrived to pafs, the heavinefs of thefe bodies (being alwaysin the afcending fide of the wheel) mutt be counterpoifed by a plummet that may be faftned about the pulley on the axis: , this plummet will leifurely defcend, according as the fand by running out of one cavity into the next, doth make the feveral parts of the wheel lighter or heavier, and fo confequently there will be produced an equal and lafting motion, which may be eafily applied to the diftinction of hours.
3. The multitude and variety of thofe fervices for which they may be
b_{e} ufeful. Unto this kind may we refer thofewatches, by which a man may tell not only the hour of the day, but the minute of the hour, the day of the month, the age and afpects of the Moon, orc. Of this nature likewifewastheLarum memioned by Walchius, which though it were but two or three inches big, yet Fab.9. would both wake a man, and of it felf light a candle for him at any fet hour of the night. And thofe weights or fprings which are of fo great force as to turn a Mill, (as fome have been contrived) may be eafily applied to more various and difficult labours.
4. The littlenefs of their frame. Nunguam ars magis guàm in miximis nota eff. (faith Aguisas). The fmalnefs of the Engine doth much oommend the skill of the artificer; to this purpofe there, have been Watches contrived in the form and quantity of a Jewel for the ear, where the Atriking of the minutes may conftantly whil. per unto us, how our lives do lide away

De fubtil. 1. 2. item

1. 17.

away by a fwift fucceffion. Cardan tells us of a Smith who made a Watch in the Jewel of a ring, to be worn on the finger, which did fhew the hours, (non folum Sagittâ, fed iciu) not only by the hand, but by the finger too (as I may fay) by pricking it every hour.

C AP. IV.

Of the movable and Gradient Automata, reprefenting the motions of living creatures, various founds of birds, or beafts, and fome of them articulate.

T
Hus much of thofe Automata, which were faid to be fixed and ftationary.

The other kind to be enquired after, are thofe that are movable and tranfient, which are defcribed to be fuch engines as move not only according to their feveral parts, but alfo accord. ing to their whole frames. Thefe are again diftinguifhable into two forts:

I. Gra-

Cap. 4. Mecbanical Motions:

1. Gradient.
2. Volunt.
3. The Gradient or ambulatory, are fuch as require fome bafis or bottom to uphold them in their motions. Such were thofe ftrange inventions (commonly attributed to Dadalus) or Celfmoving ftatues, which (unlefs they were violently detained) would of themfelves run away. * Ariftotle affirms, that Dadalus did this by putting quick filver into them. But this would have been too grofs a way for fo excellent an Artificer; it is more likely that he did it with wheels and weights. Of this kind likewife were Vulcans Tripodes, celebrated by Homer, that were made to move up and down the houfe, and fight with one another. He might as well have contrived them into Journey-men ftatues, each of which with a hammer in his hand Thould have worked at the forge.

But amongtt thefe fighting images, that in Cardas may delerve a mention, which holding in its hand a gol-

Iliad. 18.
There
bave bem
allo chari-
ots driven
by the
forcc of a
jpring
contrived
within
them.
DeVariet
reium.
1.12.c.s8. den apple,beautified with many coftly Jewels; if any man offered to takeit, the fatue prefently fhot him to death. The touching of this apple ferving to difchatge feveral fhort bows, or other the like inftruments that were fecretly couched within the body of the image. By fuch a treachery was King Chennetus murdered (as Boethius relates).

It is fo common an experiment in . thefe times to reprefent the perfons and actions of any ftory by fuch felfmoving images, that 1 hall not need to explain the manner how the wheels.

Fab. 9. There
bave been other inventions to move on the wom $t e r$.
Navigium fponte mobile,ac fui remigi ${ }_{i}$ autorem.
ficiamnullo negotio, faitb Scaliger, Exerc. 326. and fprings are contrived within them.

Amonget thefe gradient Automata, that Iron Spider mentioned in $W_{\text {at }}$ chius; is more efpecially remarkable, which being but of an ordinary bignefs, befides the outward fimilitude, (which was very exact) had the fame kind of motions with a living fider, and did creep up and down as if it had been alive. It mult needs argue a wonderful art, and accuratenefs, to contrive all the inftruments requifite for fuch

Cap. 3. Mechanical Motions.

 a motion in fo fmall a frame: There have been alfo other motions contrived from Magnetical qualities, which will hew the more wonderful, becaufe there is no apparent reafon of their motion, there being not the leaft contiguity or dependance upon any other body that may occafion it ; but it is all one as if they fhould move up and down in the open air. Get a glafs fphere, fill it with fuch liquors as may be clear of the fame colour, immixable, fuch as are oylof Tartar, and fpirit of wine : In which, it is eafie fo to poife a little globe or other flatue, that it fhall fwim in the center: Under this glafs fphere, there flould be a Loadftone concealed, by the motion of which, the ftatue (having a needle touched within it) will move up and down, and may be contrived to fhew the hour or fign. See feveral inventions of this kind in Kir. cher de Arte Magnetica, l. 2.There have been fome artificial images, which befides their feveral poftures in walking up and down, founds, whether of birds, as Larks Cuckooes,\&c.or bealt s,asHares, Foxes. The voices of which creatures fhall be rendered as clearly and diftinctly, by thefe artificial images, as they are by thofe natural living bodies, which they reprefent.

There have been fome inventions alfo w^{+}ich have been able for the utterance of articulate founds, as the fpea ing of certain words. Such are Coel.Rhod. fome of the Egyptian Idols related lect. Ant. to be. Such was the brazen head 1. 2. c.17. Maiolus Colloq. made by Fryar Bacon, and that fatue in the framing of which Albertus Magsus beftowed thirty years, broken by Aquinas, who came to fee it, purpofely that he might boaft, how in one minute he had ruined the labour of fo many years.

Now the ground and reafon how thefe founds were contrived, may be worth our inquiry.

Firf then, for thofe of birds or beafts, they were made from fuch pipes or calls, as may exprefs the fe-

Cap. 4. Mechanical Motions.

veral tones of thofe creatures which tite reprefented: thefe calls are fo commonly known and ufed, that they need not atily further explication.
\because But now about articulate founds thete is much greater difficulty. Wal- Fab.g. chius thinks it pofible entirely to preferve the voice, or any words fooken, in a hollow trink; or pipe, arid that this pipe being rightly opened the words will come out of it in the fame order whereinthey were fpoken. Somewhat like that cold Countrey; where the peoples difcourfe doth freeze in the air all winter, and may be heard in the next Summer, or at a great thaw. But this conjecture will need inb refutation:
The more fubftantial way for fuch ardifcovery, is by marking how nature her felf doth employ the feveral inftruments of fpeech, the tongue, lips; throat, teeth, '\&c. to this purpofe the Hebrews have affigned each letter unto its proper inftrument. And befides, we fhould obferve what inarticulate founds do refemble any of

Dedalus; or, Lib. H

Bacon
Nat. Hift.
Exper. 199 200.
the particplar letters. Thus we moty note the trembling of water to be lile the letter L, the quenching of hot things to the letter Z o the faund of ftrings, unto the letter Ag , the jirling
 exact obfervation of thefe particulars, it is (perhaps) poffible to make a fatue fpeak fome words.

C A P.
Concerning the poffibiltyof framing ake Ark for fubmarime A A pyig atipp. The difficulties and cquvemiemoes of fught 4.contrivange.

1 T will not be altogether impertis: nent unto the difcourfe of sheleg gradient Automata, to mention what Mek-s

Tract. de Magnetis proprietatibus.
fempus doth fo largely and pleafantly: defcant upon, concerning the making: of a thip, wherein men may fafely: fwim under water.

That fuch a contrivance is feafible and may be effected, is beyond all queftion, becaufe it hath been alrea.

Cap.' 5: Mechanical Motions.
dy experimented here in England by Cornclius D^{\prime} reble ; but how to improve it unto publick ufe and advantage, fo as to be ferviceable for remote voyages, the carrying of any confiderable number of men, w th provifions and commodities, would be of luch excellent ufe as may deferve fome further inquiry.
Concerning which there are two things chiefly confid rable:
The $\left\{\begin{array}{l}\text { many difficulties } \\ \text { remedies. } \\ \text { great conveniences. }\end{array}\right.$

1. The difficulties are generally re-: ducible to thefe three heads:
I. The letting out, or receiving in ony thing, as there fhall be occafion, without the admiffion of water. If it have not fuch a convenience, thefé kind of voyages mult needs be very dangerous and unconfortable, both by reafon of many noifon offentive things, which hould be thruft our, and many other needful things, which fhould be recelved in. Now her-in will confift the difficulty, how to conN^{2}
trive trive the opening of this Veffel fo, that any thing may be fut in, or out, and yet the water not rufh into it with much violence, as it doth ufually in the leak of a hip.

In which cafe this may be a proper remedy ; let there be certain leather bags made of feveral bigneffes, which for the matter of them fhould be both tractable for the ufe and managing of them, and firong to keep out the water ; for the figure of them, being long and open at both ends. Anfwerable to thefe, let there be divers windows, or open places in the frame of the fhip, round the fides of which one end of thefe bags may be fixed, the other end coming within the fhip being to open and hut as a purfe. Now if we fuppofe this bag thus faftned, to: be tyed clofe about towards the window, then any thing that is to be fent out, may be fafely put into that end within the fhip, which being again clofe fhut, and the other end loofened, the thing may be fafely fent out without the ade miffion of any water.

Cap. . 5 Mechanical Motions.

So again, when any thing isto be taken in, it mult be firlt received into that part of the bag towards the window, which being (after the thing is within it) clofe tyed about, the other end may then be fafely opened. It is eafie to conceive, how by this means any thing or perfon may be fent out, or received in, as there fhall be occafion; how the water, which will perhaps by degrees leak into feveral parts, may be emptied out again, with divers the like advantages. Though if there fhould be any leak at the bortom of the Veffel, yet very little water would get in, becaufe no air could get out.

2 The fecond difficulty in fuch an Ark will be the motion or fixing of it according to occafion ; The direct$i m g$ of it to feveral places, as the voyage fhall b: defigned, without which it would be very ufelefs, if it were to remain only in one place, or were to remove only blindfold, withcut a: ny certain direction; And the contrivance of this may feem very diffiN_{3} cult, gators will want the ufualadvantages of winds and tides for motion and the; fight of the heavens for direction.
but thefe difficulties may be thus remedied; is for the pracreffive motion of it, this may be effected by the help of feveral Oars, which in the outward ends of them, fha 1 be like the fins of a fifh to contraCt and dilate. The paffage where they are admitred into the flip being tyed about with fuch Leather bags (as were mentioned before) to keep out the water. It will not be convenient perhaps that the motion in thefe voyages fhould be very fwift, becaufe of thofe obfervations and difcoveries to be made at the bottom of the Sea, which in a little face may abundantly recompence. the flownefs of its progrefs.

If this Ark be foballaft as to be of equal weight with the like magnitude of water, it will then be eafily movable in any part of it.

As for the afcent of it, this may be eafily contrived, if there be fome great
weight

Cap. 5. Mechanical Motions.

183

wtight at the bottom of the fhip (belifg partof its batllaft) which by fome cord within may be looffied from it ; As this weight is let lower, fo will the flipaftend from it (if need be) to the very furface of the water; and again, as it is pulled clofe to the fhip, fo will it dffiend.
For direction of this Ark, the Marithers needle may be ufeful in refpect of the latitude of places \bar{j}. and the courfe of this fhip being more redgular than others, by reafon it is not fubject to Tempefts or unequal winds, may more certainly guide them in judging of the hingitudte of places. 3. But the greateft difficulty of alt willte this, how the air may beruppliedffor réfpiration: How contant fires thidy be kept in it for light and the dreffing of food' ; how thofe vicififitudes of ratefaction and cónderfiation pray be mimintained.
"It is obfetted, That abarret or cap, whof cavity wil contaln eight cubical feet of dir, witt not: ferva turinator or"biver for refitition, aN 4 breath which is otten fucked in and put, being fo corrupted by the mixture of vapours, that Nature rejects it as unferviceable. Now in an hour a man will need at leaft 360 ref pirations, betwixt eyery one of which there fhall be io fecond minutes, and confequently a great change and fupply of air will be neceffary for many perfons, and any long fpace.

And fo likewife for the keeping of fire'; a clofe Yeffel containing ten cubical feet of air, will nor fuffer a wax candle of an ounce to burn in it above an hour before it be fuffocated, though this proportion (faith Merfenous) doth not equally increafe for fer veral lights, becaufe four flames of an equal magnitude will be kept alive the face of 1σ fecond minutes, though one of thefe flames alone in the fame Veffel will not laft above 25, or at moft 30 feconds, which may be eafily tried in large glafs bottles, having wax capdles lighted in them, and with their mouths pinverted in water. For

Gap. 5: Mechanicial Motions.

For the rofohtion of this difficulty, though I will not fay that a map may by cuftome (which ior other things doth produce fuch frange in credible effects) be inabled tolive in the open water as the fifhes do, the infpiration and expiration of water ferving inftead of air, this being uflaal with many fifhes that have lungs; yet it is certain that long ufe and cyftome may ftrengthen men agaipft many fuch inconveniences of this kind, which to unexperienced perfons may prove yery hazardous: and fo it will not perhaps be unto thefe fo neceffary, to have the air for breathing fo pure and defecated as is required for others.

But further, there are in this cale thefe three things confiderable.
7. That the Veffel it felf fhould be of a large capacity, that as the ain in it is corrupted in ane part, fo it may be purified and renewed in the other: or if the meer refrigeration of the air would fit it for breathing, this might be fomewhat helped with bellows,

186 Dddilus; or, Lib; If. Bellows, which would cool it by motioni.
2. It is not aldogether improbable, that the lamps' or frites in the middle of it, like the reffected beams in the firt Region, Ratefying the air, and the circumambient coldnes towards the fides of the Veffer, like the fecond Region, cooling and condenfing of' 'it, would make luch a triciffitude and cthange of air, as mightit fic if for all its proper'ufes.

3: Or if treitfier of thefe conjectures

Harmon. 1.4 prop. 6. Monit. will help, yet Metfenmis tells us in another place, that there is in France one Barricuis a Diver, whio Hatti lately found out drother att, whereby a man might eaily continue under water for fix hours together; and whereas ten cubical feet of atr will not ferve another Diver to breathe in, for half an hour he by the help of a cavity, not abote one or two foot at moft, will have breath enough for fix hours, and a lanthorn Fcarce above the ufual lize to keep a candly Burning as long as a man pleafe, whicth

Cap. 5. Mecbanical Motions.

(if it be true, and were commonly known) might be a fufficient belp. againit this greateft difficulty.

As for the many advantages and conveniences of fuch a contrivance, it is not eafie to recite them.
${ }^{1}{ }^{\prime}{ }^{2}$ Tis pripate; a man may thus go to any coaft of the world invifibly, without being difcovered or prevented in bis journey.
3. 'Tis Jafe; from the uncertainty of Tides, and the violence of Tempefts, which do never move the fea above five or fix paces deep. From Pirates and Robbers which do fo infeft other voyages; fram ice and great frolts, which do fo much endanger the palfages towards the Poles.
3. It maybe of very great advantage againft a Navy of enemies, who by this means may be undermined in. the water, and blown up.
4. It may be of a fecial ufe for the relief of any place that is befieged by water, to conven unto them invifible fuppliessand fo likewife for the furprifal of any place that is acceflible by water. for fubmarine experiments and difco- ${ }^{-1}$ veries: as,

The feveral proportions of fwiftnefs betwixc the afcent of a bladder, cork, or any other light fubftance, in ${ }^{\text {a }}$ comparion to the defcent of ftones. or lead. The deep caverns and fub: terraneous paffages where the feawater in the courle of its circulation, doth vent it felf into other places, and the like. The nature and kinds of fifhes, the feveral arts of catching them, by alluring them with lights, by placing divers nets about the fides of this Veffel, fhooting the greater fort of them with guns, which may be put out of the thip by the help of fuch bags as were mentioned before, with divers the fike artifices and treacheries, which may be more fucceffively practifed by fuch wholive fo familiarly together. Thefe fifh may ferve not only for food, but for fewel likewife, in refpet of that oyl which may be extrafted from them; the way of drefing meat by lamps, be-

Cap. 5. Mechanical Motions.

 ing in many refpects the moft convenient for fuch a voyage.The many frefh fprings that may probably be met with in the boctom of the fed, will ferve for the fupply of drink and other occafions.
But above all, the difcovery of fub. marine treafures is mort elpecially confiderable, not colly in regard of what hath been drowned by wrecks, but the feveral precious things that grow there, as Pearl, Coral Mines, with innumerable other things: of great value, which may be much more eafily found out, and fetcht up by the help of this, than by any other ufaal way of the Urinators.

To which purpofe, this great Veffel may have fome leffer Cabins tyed about it, at various diftances, wherein feveral ferfons, as Scouts; may be lodged for the taking of obfervations, according as the Admiral Shall direct them. Some of them being frequently fent up to the furface of the water, as there fhall be occafion. may be exercifed in this Veffel. The obfervations made by it, may beboth written, and (if need were) printed here likewife. Several Colonies may thus inhabit, having their Children born and bred up without the knowledg of tand, who could not chufe but be amazed with ftrange conceits upon the difcovery of this upper world.

I am notrable to judge what other advantages there may be fuggefted, or whether experimen would fully anfworto thele notional conjectures. But however, becaufe the invention did unto me feem ingenious and new, being not impertiment to the prefent enquiry, therefore I thought it might be worth the meationing.

C A P.

Cap 6. Meabanicial Motions.

Of the volant Automata, Archytas bad Dove, and Regiomontanus his Ew gle. The poposibilly and great infefint: nefs of fach yivevenitions:

THE wolant or flying Automata, vaindes, asihavea felf-motion, whereby: they ame carried aloft in the open air; like the flight of Binds. Such was that wooden Dove made by Archytus, a Citizen of Taxemicum; and one of Plato's aqquaintance: And that wooden Ba gle framed by Regiadmonsamus at No-Diog.Laer. 18.
PetCrinitus de honeft. difici. 1.17.c12. rembery, which by way of triumph, did fly out of the City to meet Casarles the fifth. This later Authoris alfore ported to havemade, an iron Fly, Que ex:artificis madow gareffa, comizucs cir. cumruobitarit, taind mq is velust defeffa in Domini manus meverfa eff, which when he invited any of his friends,

Ramus Schol.Mathem. 1.2.

Dubartas, 6 days 1 mo: f. Det

Prefact to Euclid. would fly to each of them round the table, and at lergth (as being weary) return unto its Malter.

DeVariet. reium lib. 12. c.58. lity of any fuck contrivance; his reafoin is, because the inftruments of it malt be firm and Along, and contequeitly they will be too heavy to be carried by their awn force; but yet (faith he) if it be a little helped in the first rifing; and if there be any wind to affift it in the flight, then there is nothing to hinder, but that fuchs: motions may be poffible. So that the: doth in effect grant as much as may: be Sufficient for the truth and credits of thole ancient relations; and to: diftrult them without a ftronger:argu-: ment, -malt needs argue a blind and. perverfe incredulity. As for his objection concerning the heaviness of, the materials in fuck an invention, it may be anfwered, That it is eafie to contrive fuch firings and other inftruments, whole ftrength foal much exceed their heaviness. Nor can he Shew any cause why there Mechanical motions may not be as ftrong, (though not folafting) as the natural ftrength of living creatures.

Scaliger

Cap. 6. Mechanical Motions.

 Scaligerconceives the framing of fuch volant Automata, to be very eafie. Volantis columbe machinulam, cujus autorem Archytam tradust, vel facillime profiteri audeo. Thofe ancient motions were thought to be contrived by the force of fome included air: So Gellius, Ita erat foilicet librament is fufpenfum, of aurâ Spiritus inclusâ atque occulta conn tum, occ. As if there had been fome lamp, or other fire within it, which might produce fuch a forcible rarefaCtion, as fhould give a motion to the whole frame.But this may be better performed by the ftrength of fome fuch fpring as is commonly ufed in Watches; this fpring may be applied unto one wheel, which thall give an equal motion to both the wings ; thefe wings having unto each of them another fmaller fpring by which they may be contracted and lifted up: So that being forcibly depreffed by the ftrength of the great and fronger fpring, and lifted up again by the othertwo; according to this fuppo-

Noct. Ato tic.1. 10.
cap. 12
where he thinks it fo frange an imvention that
be fyles
Res abhorrens à fide
Athan.
Kircher de
Magnete

1. 2 par. 4.

Poem.
dotb pros mife a large difcourfe concring thefe kind of inventions in another Treatije which be fyles O edipus Egyptiacus,

194

Dedalus; or, Lib. II.
fition, it is eafie to conceive how the motion of flight may be performed and continued.
The wings may be made either of $f e-$ veral fubftances joyned, like the feathers in ordinary fowl, as Dadalus is feigned to contrive them, according to that in the Poet,

Ovid.Metam.1.8.
-Ignotas animum dimittit in artes,
Naturamque novat, nam ponit in ordine perinas
Aminimo captas longamb breviore fequente,
v_{t} clivo creviffe putes, *ro.
Or elfe of one continuate fubftance, like thofe of Bats. In framing, of both which, the beft guidance is to follow (as near as may be) the direction of nature; this being but an imitation of a natural work. Now in both thefe, the ftrength of each part is proportioned to the force of its imployment. But nothing in this kind can be perfectly determined without a particular trial.

Though the compofing of fuch motions may be a fufficient reward to any ones induftry in the fearching

Cap. 6. Mechanical Motions.
after them, as being in themfelves of excellent curiofity; yet there are forme other inventions depend upon them; of more general benefit and greater Importance. For if there be any fuck artificial contrivances that can fly in the air, (as is evident from the former relations; together with the grounds here Specified; and I doubt not, may be easily effected by a diligent and ingenious artificer) then it will clearly follow, that it is poffible also for a man to fly himfelf: It being eafie from the fame grounds to frame $2 n$ inftrument, wherein any one may fit, and give fuck a motion unto is as filial convey him aloft through the air. Than which there is not any ithas ghtable invention that could prove of greater benefit to the world, or glory to the Author And therefore it may justly deferve chit enquiry, who have both leifure and means for fuck oxperiments.

But in the fe practical studies, unleis a man be able to go to the try \& of things, he will performs bute 02 littlest little: : In fuch matters, lation, without particular experiment, may conjecture at many things, but can certainly effect nothing. And therefore I hall only propofe unto the world, the Theory and general grounds that may conduce to the eafie and more perfect difcovery of the fib: jeçt in queftion,for the encouragement of thole that have both minds and means for fuch experiments. This fame Scholars fate,

$$
\begin{aligned}
& \text { Res anguftadimi, and } \\
& \text { - curtafupellex.. }
\end{aligned}
$$

is that which hinders; the promoting of learning in fundry particulars, and robs the world of many excellent inventions. We read of Arifotle, that he was allowed by his Pupil Alexandy $8=0$ talents a year, for the payment of Fishers, Fowlers, and Huntars, who were to bring him in fiveralcreatures, that fo by his particular experience of their parts and difpofitions, he might be more fitly pref-

Cap. 6. Mechanical Motions.

 pared to write of their natures. The reafon why the world hath not many Ariffotles is, becaufe it hath to few. Alexanders.Amonglt other impediments of any ftrange invention or attempts, it is none of the meaneft difcouragements, that they are fo generally derided by: common opinion, being efteemed only as the dreams of a melancholy and diftempered fancy. Eufebius fpeaking with what neceflity every thing is confined by the laws of nature, and the decrees of provider:ce, fo that nothing can go out of that way, unto which naturally it is defigned; as a fifh cannot refide on the land, nor a man in the water, or aloft in the air, infers that therefore none will venture upon any fuch vain attempt, as paffing in the air, in $\mu \varepsilon \lambda \alpha \Gamma_{20 \lambda i a s ~ v o o n n o . ~}^{\text {. }}$ ze ầ ఐernt́act, unlefs his brain be a lit. tle crazed with the humour of melan. choly; whereupon he advifes that we fhould not in any particular endeavour to tranfgrefs the bounds of nature,

ConrraH:-erocl.confut. 1. I.
 naturally deftitute of wings, not to imitate the flight of Birds. That faying of the Poet,

Demises gui nimbus dr nos imitabile fulmen, Or.
hath been an old cenfure applied unto fuch as ventured upon any ftrange or incredible attempt.

Hence may we conceive the reafor, why there is fo little intimation in the writings of antiquity, concerning the poffibility of any fuch invention. The Ancients durit not fo much as mention the art of flying, but in a fable.
Dadalus, ut fame eft, fugiens Minoia regina,
Prapetibus pennis aufus fe credere colo, Infuetum per ter gelidas enavit ad arit mos, orc.
It was the cultom of thole former ages, in their overmuch gratitude, to advance the firft Authors of any ufeful difcovery, amongst the mumGer of their gods. And Dadalus be. ing fo famous among them for Sundry

Cap. 7. Mecbanical Motions. 199 fundry Mechanical inventions (efpecially the fails of fhips) though they did not for thefe place him in the heavens, yet they have promoted him as near as they could, feigning him to fly aloft in the air, when as he did but fly in a fwift fhip, as Diodorus relates the Hiftorical truth, on which that fiction is grounded.

C A P. VII.

Concerning the Art of flying. The feveral ways whereby this bath been, or may be attempted.
T Have formerly in two other * Difcourfes mentioned the poffibility of this art of flying, and intimated a further inquiry unto it, which is a kind of engagement to fome fuller difquifitions and conjectures to that purpofe.

> *World in the Moon, cap. 14 .
> Mercury, or the f_{c-} crct and fowift Mefenger c. 4.

There are four feveral ways whereby this flying in the air, hath been or may be attempted. Two of them by the ftrength of other things, and O 4 two two of them by our own ftrength. 1. By Spirits or Angels.
2. By the help of fowls.
3. By wings faftned immediateiy to the body.
4. By a flying Chariot.

Zanch. de i. For thefirlt, we read of divers oper. pars 1. 1. 4. that have paffed fwiftly in the air, by the help of Spiritsand Angels, whe-
*2 Kings 2. IIT.
\ddagger ACts 8. 39. Dan. Apoc. 39.

Luke 4.
Eraftusde Lamis.

Hift. Ind 1.7. c. 26. ther good Angels, as* Elias was carried into heaven in a fiery chariot: as + Philip was conveyed to Azotus, and Habakkuk from Jewry to Babylon, and back again immediately : Or by evil Angels, as our Saviour was carried by the Devil to the top of a high mountain, and to the pinacle of the Temple. Thus Witches are commonly related to pafs unto their ufual meetings in fome remote place; and as they do fell winds unto Mariners, fo likewife are they fometimes hired to carry men fpeedily through the open air. Acofta affirms, that fuch kind of paffages are ufual amonglt divers Sorcerers with the Indians at ṭhiṣ day.

Cap.7. Mechanical Motions. 201

So Kepler in his Aftronomical dream doth fancy a Witch to be conveyed unto the Moon by her Familiar.

Simon Magus was fo eminent for miraculous Sorceries, that all the people in Sumaria, from the leaft to the greateft, did efteem him as the great power of God. And fo famous was he at Rome, that the Emperour erect- Hegefip.l. ed a fatue to him with this Infcription, Simoni Deo Sancto. 'Tis foried of this Magician, that having challenged Saint Peter to do Miracles with him, he artempted to fly from the Capitol to the Aventine Hill. But when he was in the midft of the way,SaintPeters prayers did overcome his Sorceries, and violently bring him to the ground, in which fall having broke his thigh, within a while after he dyed.

But none of all thefe relations may conduce to the difcovery of this experiment, as it is here enquired after, upon natural and artificial grounds.
2. There are others who have con- veyed through the air by the help of Fowls; to which purpofe that fiction of the Ganzi's, is the moft pleafant and probable. They are fuppofed to be great fowl of a ftrong lafting flight, and eafily tamable. Divers of which may be fo brought up, as to joyn together in carrying the weight of a man, fo as each of them fhall partake his proportionable fhare of the burden; and the perfon that is carried may by certain reins direct and fteer them in their courfes. However this may feem a ftrange propofal, yet it is not certainly more improbable, than many other arts, wherein the induftry of ingenious men hath inftructed thefe brute creatures. And I am very confident, that one whofe genius doth enable him for fuch kind of experiments, upon leifure, and the advantage of fuch helps as are requifite for various and frequent trials, might effect fome ftrange thing by this kind of enquiry. 'Tis reported as a cuftom amongft the

Cap. 7. Mecbanical Motions. 203

the Lencatians, that they were wont upon a fuperftition to precipitate a man from fome high cliff into the Sea, tying about him with ftrings at fame diffance, many great fowls, and fixing unto his body divers feathers fpread to break the fall; which (faith

Nat Hiff. experim.
816. the learned Bacon, if it were diligently and exactly contrived) would be able to hold up, and carry any proportionable weight; and therefore he advifes others to think further upon this experiment, as giving fome light to the invention of the art of flying.
3. ${ }^{\text {'Tis }}$ the more obvious and common opinion, that this may be effected by wings faftned immediately to the body, this coming neareft to the imitation of Nature, which Should be obferved in fuch attempts as thefe. This is that way which Fredericus Hermannus in his little difcourfe do Arte volandi, doth only mention and infift upon. And if we may truft credible ftory, it hath been frequently attempted, not without fome fuccefs.

So the anscient Brio tifh Blm duds.
'Tis related of a certain Englifh Erneftus Monk called Elmerus, about the ConBurgravus inPanoplia PhyficoVultania. Sturmius in Lat. lingure refolut.

Melann--choly.
Part. 2.
Sect. 1.
Mem. 3 . feffor's time, that he did by fuch wings fly from a Tower above a furlong; and fo another from Saint Marks fteeple in Venice ; another atNorinberge; and Busbeguius fpeaks of a Turk in Congtant inople, who attempted fomething this way. Mr. Burton mentioning this quotation, doth believe that fome new-fangled wit ('tis his Cynical phrafe) will fome time or other find out this art. Though the truth is, moft of thefe Artifts did unfortunately mifcarry by falling down and breaking their arms or legs, yet that may be imputed to their want of experience, and too much fear, which mult needs poffels men in fuch dangerous and frange attempts. Thofe things that feem very difficult and fearful at the firlt, may grow very facil after frequent trial and exercife. And therefore he that would effect any thing in this kind, mult be brought up to the conftant practice of it from his youth. Trying

Cap. 7. Mechanical Motions.

 ing firf only to ufe his wingsin runing on the ground, as an Eftrich or tame Geefe will do, touching the earth with his toes; and to by degrees learn to rife higher, till he fhall attain unto skill and confidence. I have heard it from credible teftimony, that one of our own Nation hath proceeded fo far in this experiment, that he was able by the help of wings in fuch a runining pace, to ftep conitantly ten yards at a time.It is not more incredible, that frequent practice and cuftom fhould inable a man for this, than for many other things which we fee confirmed by experience. What ftrange agility and activenefs do our common tumblers and dancers on the rope attain to by continual exercife? ' T is related of certain Indians, that they are able when a horfe is running in his full career, to ftand upright on his back, to turn themfelves round, to leap down, gathering up any thing from theground, and immediately to leap up again, to fhoot exactly at any mark, the horfe not intermitting
termitting his courfe. And fo upon two horfes together, the man fetting one of his feet upon each of them. Thefe things may feem impoffible to others, and it would be very dangerous for any one to attempt them, who hath not firft gradually attained to thefe arts, by long practice and trial ; and why may not fuch practice enable him as well for this other experiment, as for thefe things?

There are others who have invented ways, to walk upon the water, as regularly and as firmly as upon the land. There are fome fo accultomed to this element, that it hath been almoft as natural to them, as to the finh; men that could remain for above ari hour together under water. Pontanus mentions one who could fwim above a hundred miles together, from one fhore to another, with great fpeed, and at all times of the year. And it is foried of a certain young man, \ddagger Treatite of cuficom. Sicilian by birth, and a Diver by profeffion, who had fo continually ufed himfelf to the water, that he could

Cap. 7. Mechanical Motions.
 702

 not enjoy his health out of it. If at any time he flaid with his friends on the land, he hould be fo tormented with a pain in his ftomack, that he was forced for his health to return back again to Sea , wherein he kept his ufual refidence; and when he faw any fhips, his cuftom was to fwim to them for relief, which kind of life he continued till he was an old man, and dyed.I mention thefe things, to fhew the great power of practice and cuftom, which might more probably fucceed in this experiment of flying (if it were but regularly attempted) than in fuch ftrange effects as thefe.

It is a ufual practice in thefe times, for our Funambalones, or Dancers on the Rope, to attempt fomewhat like to flying, when they will with their heads forwards flide down a long Cord extended; being faftned at one end on the top of fome high Tower, and the other at fome diftance on the ground; with wings fixed to their fhoulders, by the Thaking of which they they will break the force of their defcent. It would feem that fome at tempts of this kind were ufually amongft the Romans. To which that
De gub. expreffion in $$ Salvian may refer, Dei l. 6. where amongft other publick fhews of the Theater, he mentions the Pe. Annot. in taminarii: which word (faith Fo.BrafSalv. ficanus) is fcarce to be found in any other Author, being not mentioned either in Fulius Pollux, or Politian. ${ }^{\prime}$ 'Tis probably derived from the Greek we rd risteada, which fignifies to fly, and may refer to fuch kind of Ropedancers.

But now becaufe the arms extended are but weak and eafily wearied, therefore the motions by them are like to be but fhort and flow, anfwerable it may be to the flight of fuch domeftick fowl, as are molt converfant on the ground, which of themfelves we fee are quickly weary, and therefore much more would the arm of a man, as being not naturally defigned to fuch a motion.

It were therefore worth the inqui-

Cap. 7. Mechanical Motions.
ry to confider whether this might not be more probably effected by the 1 la bour of the feet, which are naturally more ftrong and indefatigable : In which contrivance the wings fhould come down from the fhoulders on each fideas in the other, but the| motion of them fhould be from the legs, being thruft out and drawn in again one after another, fo as each leg fhould move both wings, by which means a man fhould (as it were) walk or climb up into the air: and then the hands and arms might be at leifure to help and direct the motion; or for any other fervice proportionable to their ftrength. Which conjefture is not without good probability, and fome fpecial advantages above the other.
4. But the fourth and laft way feems unto me altogether as probable, and much more ufeful than any of the reft : And that is by a flying Chariot, which may be fo contrived as to carry: a man within it ; and though the ftrength of a fpting might pert haps be ferviceable for the motion of this engine, yet it were better to have it affifted by the labour of fome intelligent mover, as the heavenly Orbs are fuppofed to be turned. And thetefore if it were made big enough to carry fundry perfons together, then each of them in their feveral turns might fucceffively labour in the caufing of this motion; which thereby would be much more conftant and lafting, than it could otherwife be, if it did wholly depend on the ftrength of the fame perfon. This contrivance being as much to be preferred before any of the other, as fwimming in a fhip before fwimming in the water.

CIA P. VIII.

A refolution of the two chief difficulties that feem to oppofe the polfibility of a flying Cbariot.
$T^{H E}$ chief difficulties againft the polfibility of any fuch contrivance, may be fully removed in the refolution

Cap. 8. Mechanical Motions.

1. Whether an engine of fuch capacity and weight, may be fupported by fo thin and light a body as the air?
2. Whether the ftrength of the perfons within, it may be fufficient for the motion of it ?
3. Concerning the firt ; when Callias was required by the men of Rhodes, to take up that great Melepos ri.c. 1 it . lis, brought againft them by Demetrius, (as he had done before unto fome lefs, which he himfelf had made) He anfwered, that it could not be done. Nonnilla enims funt quse in exemplaribus videntur fimilia, cum autem crefoere caperunt; dilabuntur. Be-

So Ramus schol.Mai them. $1:$: caufe thofe things that appear probable in leffer models, when they are encreafed to a greater proportion, do thereby exceed the power of art: For example, though a man may make an inftrument to bore a hole an inch wide, or half an inch, and fo lefs; yet to bore a hole of a foot wide, or two foot, is not fo much as to be

$$
P_{x}
$$

thought be able to uphold fome leffer bodies, as thofe of birds; yet when the quantity of them is encreafed to any great extenfion, it may juftly be doubted, whether they will not exceed the proportion that is naturally required unto fuch kind of bodies.

To this I anfwer, That the engine can never be too big or too heavy, if the fpace which it poffeffes in the air, and the motive-faculty in the inftrument be anfwerable to its weight. That faying of Callias was but a groundlefs fhift and evafion whereby he did endeavour to palliate his own ignorance and difability. The utmoft truth which feems to be implied in it, is this: That there may be fome bodies of fo great a bignefs, and gravity, that it is very difficult to apply fo much force unto any particular inftrument, as fhall be able to move them.

Againft the example, it may be affirmed and eafily proved, that it is equally poffible to bore a hole of any bignefs,

Cap. 8. Mecbanical Motions.
bignefs, as well great as little, if we fuppofe the inftrument, and the frength, and the application of this ftrength to be proportionable;; But becaufe of the difficulty of thefe concurrent circumftances in thofe greater and more unufual operations, therefore do they fallly feem to be abfolutely impoffible.

So that - the chief inference from this argument and example, doth imply only thus much, that it is very difficult to contrive any fuch motive power, as fhall be anfwerable to the greatnefs and weight of fuch an inftrument as is here difcourfed of, which doth not at all impair the truth to be maintained; For if the poflibili. ty of fuch a motion be yeilded, we need not make any fcruple of granting the difficulty of it; It is this muft add a glory to the invention; and yet this will not perhaps feem fo very dificult to any one who hath but diligently obferved the fight of fome other birds, particularly of a Kite, how he will fwim up and down

214
 Dadalus; or, Lib. II.

 in the air, fometimes at a great height, and prefently again lower, guiding himfelf by his train, with his wings extended without any fenfible motion of them; and all this when there is only fome gentle breath of air ftirring, without the help of any ftrong forcible wind. Now I fay, if that fowl (which is none of the lighteft) can fo very eafily move it felf up and down in the air, without fo much as ftirring the wings of it ; certainly then, it is not improbable, but that when all the due proportions in fuch an engine are found out, and when men by long practife have arrived to any skill and experience, they will be able in this (as well as in many other things) to come very pear unto the imitation of nature.Sen. Nat. 24.l. 3. c. 2 §:

As it is in thofe bodies which are carried on the water, though they be never fo big, or fa ponderous, (fuppofe equal to a City or a whole Ifland) yet they will always fwim on the top, if they te but any thing lighter than fo much water greatness (though never foimmenfe) that can hinder their being fupported in that light element; if we fuppofe them to be extended unto a proper tionable face of air. And as from the former experiments, Archimedes hath compofed a fubtil faience in his Book, De infidentibus bumido, concerning the weight of any heavy body, in reference to the water wherein it is : So from the particular trial of the fe other experiments, that are here inquire after, it is poffible to raife a new faience, concerning the externfion of bodies, in comparifon to the air, and motive faculties by which they are to be carried.

We fee a great difference betwixt the feveral quantities of fuch bodies as are commonly upheld by the air; not only little gnats, and flies, but alto the Eagle and other fowl of vafter magnitude. Cardan and Scaliger do unanimounly affirm, that there is a

Silbtil.l.1o. ${ }_{2}{ }_{2 i t r i t}$ 230 bird amonglt the Indians of fo great a bignefs, that his beak is often ufed to make a fheath or fcabbard for afword. And Acoftatells us of a fowl

Hifor.

Nov.Orb.
1.4.6. 37. in Peru called Caindores, which will of themfelves kill and eat up a whole Calf at a time. Nor is there any reafon why any other body may not be fupported and carried by the air, though it thould as much exceed the quantity of thefe fowl, as they do the quantity of a fly.

Marcus Polus mentions a fowl in Madagafiar, which he calls a Ruck, the feathers of whofe wings are 12 paces, or threefcore foot long, which can with as much eafe foop up an Elephant, as our Kites do a Moufe. If this relation were any thing credible, it might ferve as an abundant proof for the prefent quary. But I conceive this to bealready fo evident, that it needs not any fable for its further confirmation.
2. The other doubt was, whether the frength of "the other aperfons within-it, will be fufficient for the

Cap. 8. Mecbanical Motions.
moving of thisengine? I anfwer, the maindifficulty and labour of it will be in the raifing of it from the ground; near unto which; the earths attractive -vigor is of greateft efficacy:- But for the better effecting of this, it may be helped by the ftrength of winds, and by taking its firt nife from fome mountain, or other high place. When once it is aloft inthe air, the motion of it will be eafie, as it is in the flight of all kind of birds, which being at any - great diftance from the earth, are able to continue their motion for a long time and way, with little labour or wearinefs. .
'Tis certain from common relation and experience, that many birds do crofs the feas for divers hundred miles together: fundry of them amongft us, which are of a fhort wing and flight, as Blackbirds, Nightingales., \&c. do fly from us into Germany, and other remoter Countries. And Mariners do commonly affirm, that they have found fome' fowl above fix hundred miles from any land. Now. to labour fo much in thofe long journeys, as they do when they fly in our fight, and near the earth, it were impoffible for any of them to pafs fo far without refting. And therefore it is probable, that they do mount unto fo high a place in the air, where the natural heavinefs of their bodies does prove but little or no impediment to their flight; Though perhaps either hunger, or the fight of fhips, or the like accident, may fometimes occafion their defcending lower, as we may guefs of thofe birds, which Mariners have thus beheld; and divers others, that have been drowned and caft up by the fea.

Whence it may appear, that the motion of this Chariot (though it may be difficult at the firlt) yet will ftill be eafier, as it afcends higher, till at length it fhall become utterly devoid of gravity, when the lealt ftrength will be able to beftow upon it a fwift motion: as I have proved more be fuppofed that a man in the x thereal air does lofe his own heavinefs, how fhall he contribute any force towards the motion of this inftrument?

I anfwer, The ftrength of any living creature in thefe external motions, is fomething really diftinct from, and fuperad ed unto its natural gravity; as common experience may hew, not only in the impreffion of blows or violent motions, as a River-Hawk will Atrike a fowl with a far greater force, than the meer defcent or heavinefs of his body could poffibly perform : But alfo in thofe actions which are done without fuch help, as the pinching of the finger, the biting of the teeth, ©rc. all which are of much greater ftrength than can proceed from the meer heavinefs of thofe parts.

Asfor the other particular doubts, concerning the extreme thinnefs and coldnefs of this æchereal air, by reaton of which it may feem to be altogether impaffible, I have already refolved them in the above-cited difcourfe.

The ufes of fuch a Chariot may be various; Pefides the difcoveries which might be thereby made in the Lunary world; It would be ferviceable alfo for the conveyance of a man to any remote place of this earth : as fuppofe to the Indies or Antipodes. For when once it was elevated for fome few miles, fo as to be above that Orb of Magnetick virtue, which is carried about by the earths diurnal revolution, it might then be very eafily and fpeedily directed to any particular place of this great Globe.

If the place which we intended were under the fame parallel, why then the earths revolution once in twenty four hours, would bring it to be under us;fo that it would be but defeending in a ftreight line, and we might prefently be there. If it were under any other parallel, it would then only require that we fhould diredtit in the fame Meridian, till we did come to

Cap. 8. Mecbanical Motions. that parallel ; and then (as before) a man might eafily defcend unto it.

It would be one great advantage in this kind of travelling, that one fhould be perfectly freed from all inconveniences of ways or weather, not having any extremity of heat, or cold, or Tempefts to moleft him: This x thereal air being perpetually in an equal temper and calmnefs. Pars fuperior mundi ordinatior eft nec in nubem cogitur, nec in tempeftatem impellitur, nec verfatur in turbinem, omsid tumultu caret, inferiora fulminant. The upper parts of the world are always quiet and ferene, no winds and bluftring there ; they are thefe lower cloudy regions that are fo full of tempefts and combuftion.

As for the manner how the force of a fpring, or (inftead of that) the ftrength of any living perfon, may be applied to the motion of thefe wings of the Chariot, it may eafily be apprehended from what was formerly delivered.

There are divers other particulars

Aswell too long 2s too fhort, too broad as too narrow, may be an impediment to the motion, by making it more difficult, llow and flaging
to be more fully enquired after, for the perfecting of fuch a flying Chariot; as concerning the pruportion of the wings borh for their length and breadth, in co rp. rilon to the weight which is to be carried by them, as alfo concerning thofe fpecial contrivances, whereby the ftrength of thefe wings may be feverally applied either to afcent, defcent, progreffive, or a turning motion; All which, and divers the like enquiries can only be refolved by particular experiments. We know the invention of failing in thips does continually receive fome new addition from the experience of every age, and hath been a long while growing up to that perfection, unto which it is now arrived. And fo mult ir be expected for this likewife, which may at firft perhaps feem perplexed with many difficulties and inconveniences, and yet upon the experience of frequent tryals, many things may be fuggetted to make it more facil and commodious.

He that would regularly attempt any thing to this purpofe, fhould obferve this progrefs in his experiments, helhould firft make enquiry what kind of wings would te moft ufeful to thisend; thofe of a Bat being molt eafily imitable, and perhaps nature did by them purpofely intend fome intimation to direct us in fuch experiments; that creature being not properly a bird, becaufe not amongtt the Ovipara, to imply that other kind of creatrues are capable of flying as well as birds ; and if any hould attempt it, that would be the beft pattern for imitation.

After this, he might try what may be effected by, the force of fprings in leffer models, anfwerable unto Archytas his Dove, and Regiomontassus his Eagle ; in which he muft be careful to obferve the various proportions betwixt the ftrength of the fpring, the heavinefs of the body, the breadth of the wings, the fwiftnefs of the motion, \&c.
From thefe he may by degrees afcend to fome larger effays.

C A P.
CAP. IX.

Of a perpetual motion. The ifeeming facility:and real difficulty of any fucb contrivance. The feverat ways whereby it hath been atttempted, particularli: by Chymiftry.
T is the chief inconvenience of all: the Automata before mentioned;: that they need a frequent repair of new ftrength; the caufes whence their motion does proceed, being fubject to fail and come to a period; and therefore it would be worth an enquiry, to examine, whether or no there may be made any fuch artificial contrivance, which might have the principle of moving from it felf; fo that the prefent motion fhould conftantly be the caufe of that which fucceeds.

This is that great Secret in Art, which like the Philofopher's Stone in Nature, hath been the bulinefs and ftudy of :many more refined Wits, for divers ages together; and it may well be queftioned, whether either

Cap. 9.Mechanical Motions. of them as yet, hath ever been found out, though if this have, yet like the other, it is not plainly treated of by any Author.

Not but that there are fundry difcourfes concerning this fubjeq, but they are rather conjectures than experiments. And though many inventions in this kind, may at firft view bear a great fhew of probability ; yet they will fail, being brought to trial, and will not anfwer in practife what they promifed in fpeculation. Any one who hath been verfed in thefe experiments muft needs acknowledge that he hath been often deceived in his ftrongeft confidence; when the imagination hath contrived the whole frame of fuch an inftrument, and conceives that the event muft fallibly anfwer its hopes; yet then does it ftrangely deceive in the proof, and difcovers to us fome defect, which we did not befor e take notice of.

Hence it is, that you will fcarce talk with any one who hath never fo little fmattering in thefe arts, but he
will inftantly promife fuch a motion, as being but an eafie atchievement, till further trial and experience hath taught him the difficulty of it. There being no enquiry that does more entice with the probability, and deceive with the fubtilty. What one fpeaks wittily concerning the Philofophers Stone, may be juftly applied to this, that it is Cafta meretrix, a chaft Whore, Quia maltos invitat, neminem admit$t i t$, becaufe it allures many, but admits none.

I hall briefly recite the feveral ways whereby this hath been attemp. ted, or feems moft likely to be effeEted, thereby to contract and facilitate the enquiries of thofe who are addicted to thefe kind of experiments; for when they know the defects of other inventions, they may the more eafily avoid the fame, or the like, in their own.

The ways whereby this hath been attempted, may be generally reduced to thefe three kinds :

1. By Chymical extractions.
2. By

Cap.9. Mechanical Motions.

2. By Magnetical virtues:
3. By the natural affection of gravity.
I. The difcovery of this hath been attempted by Chymiftry. Paracelfus and his followers have bragsed, that by their feperations and extractions, they can make a little world which Shall have the fame perpetual motions with this Microco/me, with the reprefentation of all Meteors, Thunder, Snow, Rain, the courfes of the fea in its ebbs and flows, and the like; But thefe miraculous promifes would require as great a faith to believe them, as a power to perform them: And though they often talk of fuch great matters,

At nufquam totos inter qui talia curant,
Apparet ullus, gui re miracula tanta Comprobet -
yet we can never fee them confirmed by any real experiment; and then befides, every particular Author in that art; hath fuch a diftinct language .of his own, (all of thembeing fo full Q 2 that 'xis very hard for any one (unlefs he be throughly verfed amongft them) to find out what they mean, much more to try it.

Aten Ma them. ${ }^{-}$Rescat.prob. 118.

One of there ways (as I find it Set down) is this. Mix five ounces of \ddot{y}, with an equal weight of ψ grind them together with ten ounes of fublimate, diffolve them in a Cellar upon forme marble for the face of four days, till they become like oyl-olive; diftil this with fire of chaff, or driving fire, and it will fublime into a dry fubftance : and fo by repeating of thee diffolvings and diftillings, there will be at length produced divers fall tomes, which being put into a glass well lated, and kept dry, will have a perpetual motion.

I cannot fay any thing from experience againft this; but methinks it does not feem very probable, becafe things that are forced up to fuch a vigoroufnefs and activity, as there ingredients flem to be by their fre-

Cap. 9. Mechanical Motions.

quent fublimatings and diftillings, are not likely to be of any duration; the more any thing is ftretched beyond its ufual nature, the lefs does it laft, violence and perpetuity being no companions. And then befides, fuppofe it true, yet fuch a motion could not well be applied to any ufe, which muft needs take much from the delight of it.

Amongft the Chymical experiments to this purpofe, may be reckoned up that famous motion invented by Cornelius Dreble, and made for King Fames ; wherein was reprefented the conftant revolutions of the Sun and Moon, and that without the help either of fpring or weights. Marcellus Vranckbein, Ipeaking of the means whereby it was performed, he calls it, Scintillula anime magnetice mundi, feu Aftralis O infenfibilis $\int p i-$ ritus; being that grand fecret, for the difcovery of which, thofe Dictators of Philofophy, Democritus, PYthagoras, Plato, did travel unto the Gymnofophifts, and Indian Priefts.

Celebrated in an Epigram by Hugo Grotits
I.Epi. Epift. ad
Ernefinem de Lamp. Vitre.

The Author himfelf in his difcourfe

Epift: ad F acobusen? Regem. upon it, does not at all reveal the way, how it was performed. But there is one Thom rs Tymme, who was a familiar acquaintance of his, and did often pry into his works, (as he profeffes himfelf) who affirms it to be done

Fhilofophical ditlogue.
Confer. 2. !ep. 4. thus; By extractnig a fiery Spirit out of the Mineral matter, joyning the fame with bis proper air, whicb imcluded in the Axle-tree (of the firlt moving wheel) being hollom, carrieth the other wheels, making a continual rotation, except iffue or vept be given in this hollow axlestree, whereby the imprifoned Spirit may pet forth.

What ftrange things may be done by fuch extractions, I know not, and therefore dare not condemn this relation as impoffible; buit methinks it founds rather like a chymical dream, than a Philofophical truth. It feems this imprifoned firit is now fet at liberty, or elfe is grown weary, for the inftrument (as I have heard) hath ftood Itill or anany years. It is here conflerable, that any force is weakeft
near

Cap.9. Mechanical Motions.

near the center of a wheel ; and therefore though fuck 2 Spirit might of it Self have an agitation, yet it's not eafily conceivable how it Should have ftrength enough to carry the wheels about with it. And then the abfurdity of the Author's citing this, would make one miltrult his mittake; he urges it as a Prong argument againft Copernicus, as if becaufe Drebledid thus contrive in an Engine, the revolution of the heavens, and the immovablenets of the earth, therefore it mut needs follow, that 'tic the heavens which are moved, and not the earth. If his relation were no truer than his consequence, it had not been worth the citing.

Q 4 CA P-

C A P. X.

Of fubterraneous lamps: divers biftoric cal relations concerning their duration for many buedred years together.

uNto this kind of Chymical experiments, we may moft proba: bly reduce thofe perpetual lamps, which for many hundred years together have continued burning without any new fupply in the fepulchres of the Ancients, and might (for ought we know) have remained fo for ever. All fire, and efpecially flame, being of an active and ftirring nature, it cannot therefore fubfift without motion; whence it may feem, that this great enquiry hath been this way accomplifhed: And therefore it will be worth our examination to fearch further into the particulars that concern this experiment. Though it be fot fo proper to the chief purpofe of this difoourfe, which concerns $M e$ chanical Geometry; yet the fubtilcy

Cap. 10.

Mechanical Motions.
233 and curiofity of it, may abundantly requite the impertinency.

There are fundry Authors who treat of this Subjection by the by, and in fome particular faffages, but none that I know of (except Fortunius Licetus) that hath writ purpofely any fet and large difcourfe concerning it : out of whom I fhall borrow many of ${ }_{\text {nis. }}^{\text {rum }}$ thofe relations and opinions, which may moft naturally conduce to the prefent enquiry.
For our fuller underftanding of this, there are thefe particulars to be explained;

1. Firft then, for the 8π, or that there have been fnch lamps, it may be evident from fundry plain and undeniable teftimonies: Saint Auftin mentions one of them in a Temple dedicated to V tnus, which was al-

De Givit. Dei.l. 21. cap. 6. ways expofed to the open weather, and could never be confumed or extinguifhed. To him affentsthe judi-
cious Zanchy. Pancyrollus mentions a Dedperd. Lamp found in his time, in the fepulTit. 35. De operibus Dii part I.

$$
\text { l. } 4: \text { c. } 12 .
$$

* Or Antioch. Licetus de Lucernis,l.5.c. 7. cher of Tullia, Cicero's daughter, which had continued there for about 1550 years, but was prefently extinguifhed upon the admiffion of new air. And'tis commonly related of Cedrenus, that in Fuftinian's time there was another burning lamp found in an old wall at * Ede $\iint a$, which had remained fo for above 500 years, there being a ${ }^{\text {Cruci- }}$ fix placed by it, whence it fhould feem that they were in ufe alfo amongit fome Chriftians.

But more efpecially remarkable is ${ }^{*}$ that relation celebrated by fo many Authors, concerning olybius his lamp, which had continued burning for' 50 years. The ftory is thus: As a ruftick was digging the ground by Padisa, he found an Urn or earthen pot, in which there was another Urn, and in this leffer, a lamp clearly burning ; on each fide of it there were two other Veffels, each of them full of a pure liquor, the one of gold, the other of Silver. EgoChymia artis, ($\sqrt{2}$

Cap.10. Mechanical Motions.
modo ver a poteft effe ars chymia) jurare. aufom elementa or materiam omnium, (faith Maturantius, who had the poffeffion of thefe things after they were taken up). On the bigger of thefe Urns there was this infcription:

Plutoni facrum munus ne attingite fures. Ignotumeft vabis boc quod in orbe latet, Namque elementa gravi claufit digefta - labore.
V afe fub boc modico, Maximus Olybius.
Adjot facundo cuflos fibi copia cornu,
Ne tanti pretium depereat laticis,
The leffer Urn was thus infcribed:
Abite binc peffimi fures,
Vos quid vultis, veftris cum oculis emifftiis?
Abite binc veftro cumn Mercurio
Petrfato Caduceatoque,
Donum boc Maximum, Maximus Olybius
Plutoni facrum facit.
Whence we may probably conjecture, that is was fome Chymical fecret, cret, by whichthis was contrived.

Mag Natural.l.12. e. ult.

Chron. Martin Fort. licet. de lucern. l. 1. c. II.

Baptifta Porta tells us of another lamp burning in an old marble fepulcher, belonging to fome of the ancient Romans, inclofed in a glafs vial, found in his tine, about the year 1550 , in the Ifle Nefis , which had been buried there before our Saviour's coming.

In the Tomb of Pallas the Ar. cadian who was flain by Turnus in the Trojan war, there was found another burning lamp in the year of our Lord 1401. Whence it would feem that it had continued there for above two thoufand and fix hundred years : and being taken out, it did remain burning, notwithftanding either wind or water, with which fome did ftrive to quench it; nor could it be extinguifhed till they had fpilt the liquor in it.

Ludovicus Vives tells usiof another lamp that did continue burning for

Not. add Auguft.de Civit.Dei, l. 2 I.c. 6. 1050 years, which was found a little before his time.

Such a lamp is likewife related to be

Cap. 10. Mechanical Motions.

 be feen in the fepulcher of Francis Roficro/s, as is more largely expreffed in the confeffion of that fraternityThere is another relation of a certain man, who upon occafion digging fomewhat deep in the ground, did meet with fomething like a door, having a wall on each hand of it ; from which having cleared the earth, he forced opon the door ; upon this there was difcovered a fair Vault, and towards the farther fide of it, the ftatue of a man in Armour, fitting by a table, leaning upon his left arm, and holding a fcepter in his right hand, with a lamp burning before him; the floor of this Vault being fo contrived, that upon the firft ftep into it, the ftatue would erect it felf from its leaning pofture, upon the fecond ftep it did lift up the fcepter to ftrike, and before a man could approach near enough to take hold of the lamp, the ftatue did ftrike and break it to pieces. Such care was there taken that it might not be ftoln away, or difcovered. Our learned Cambden in his defcrip- pag. 572. tion
23^{8} Dedalus; or, Lib. II. tion of Yorkshire, fpeaking of the tomb of Conftantius Chlorus, broken up in thefe later years, menions fuch a lamp to be found within it.

There are fundry other relations to

De jure mawium. l. 2.c. 32. this purpofe. Quodad lucernas attinet, tlle in omsibus fere monumentis inveniuntur, (faith futherius). In moft of the ancient Monuments there is fome kind of lamp, (though of the ordinary fort); But thole perfons who were of greateft note and wifdom, did procure fuch as might laft without fupply, for fo many ages together. Pancirollas tells us, that it was ufual Tit.62.
for the Nobles amongit the Romans, to take fpecial care in their laft wills, that they might have a lamp in their Monunents. And to this purpofe they did ufually give liberty unto frme of their flaves on this condition, that they fhould be watchful in maintaining and preferving it. From all whith relations, the firft particular of thes enquiry, concerning the being or esiftence of fuch lamps, may fufficiently appear.

C A P. XI.

Several opinions concerning the nature and reafon of thefe perpetual Lamps

THere are two opinions to be anfwered, which do utterly overthrow the chief confequence from thefe relations.

1. Some think that thefe lights fo often difcovered in the ancient tombs, were not fire or flame, but only fome of thofe bright bodies which do ufually fhine in dark places.
2. Others grant them to be fire, but yet think them to be then firft enkindled by the admiffion of new air when thefe fepulchres were opened.
3. There are divers bodies (faith Ariftotle) which Shine in the dark, as rotten wood, the fcales of fome finh-

De antinats 1.2. 6. 7. es, ftones, the glow-worm, the eyes of divers creatures. Cardan tells us of a bird in new Spain, called Cocoyum, whofe whole body is very bright, but his eyes almoft equal to the light of • a candle, by which alone in a dark night one may both write and read; By thefe the Indians (faith he) ufe to eat their feafting Suppers.

It is commonly related and believed, that a Carbuncle does Shine in the dark like a burning coal, from
*Carbo
Pyropuca Hiftoria Animal. 18 whence it hath its* name. To which purpofe there is a ftory in Alian, of a Stork, that by a certain woman was cured of a broke n thigh, in gratitude to whom, this fowlafterwards flying by her, did let fall into her lapa bright Carbuncie, which (faith he) would in the night time fhine as clear as a lamp. But this and the like old relations are now generally difbelieved and rejected by learned men : Doctifimorum omnium confenfu, bujufmodi gemme non inveniuntur, faith

De lapid obemmis. 1.2.c.8. Boetius de Boot)a man very muchskilled in, and inquifite after fuch matters; nor is there any one of name that does from his own eye-fight or experience afirm the real exiftence of any gem fo qualified.

Sone have thought that the light in

Cap. 11. Mecbanical Motions. in ancient tombs hath been occa!ioned from fome fuch bodies as thefe. For if there had been any poffivility to preferve fire fo long a pace,'tis likely then that the I/raetites would have known the way, who were to keep it perpetually for their Sacrifices.

But to this opinion it might be replied, That none of thefe Nuicticula; or night-fhining bodies have been obferved in any oi the Ancent Seppulchres, and therefore this is a meer imaginary conjecture ; and then befides, fome of thefe lamp have been taken out burning, and continued fo for a confiderable fpace afterwards. As for the fuppofed conveniency of them, for the perpetuating of the holy fire amongft the Jews, it may as well be feared left thefe fhould have occafioned their Idolatry, unto which that Nation was fo ftrongly addicted upon every flight occafion; nor may it eem ftrange, if the providence of God Thould rather permit this fire fometimes to go out, that fo by their earneft prayers, being aR gain might be the better ftirred up and ftrengthned by fuch frequent miracles. 2. It is the opinion of Gutherius, that thefe lamps have not continued burning for fo long a fpace as they are fuppofed in the former relations; but that they were then firft enflamed by the admiffion of new air, or fuch other occafion, when the fepulchres were opened: as we fee in thofe fat earthy vapours of divers forts, which are oftentimes enkindled into a flame. And 'tis faid, that there are fome Chymical ways, whereby iron may be fo heated, that being clofely luted in a glafs, it fhall conftantly retain the fire for any fpace of time, though it were for a thoufand years or more; at the end of which, if the glafs be opened, and the frefh air admitted, the iron fhall be as red hot as if it were newly taken out of the fire.

But for anfwer to this opinion, 'tis confiderable, that fome Urns have had infrip- infcriptions on them, expreffing that the lamps within them were barning, when they were firt buried. To which may be added the experience of thofe which have continued fo for a good fpace afterwards; whereas the inflamation of fat and vifcous vapours,does prefently vanilh.The lamp which was found in the Ine Neffs, did burn clearly while it was inclofed in the glafs; but that being broken, was prefently extinguilhed. As for that Chymical relation, it may rather ferve to prove, that fire may continue fo many ages, without confuming any fuel.

Sothat notwithftanding the oppofite opinions, yet 'tis more probable that there have been fuch lamps as have remained burning, without any new fupply, for many hundred years together ; which was the firf particular to be explained.
2. Concerning the reafon, why the cur fur. Ancients were fo careful in this particular, there are divers opinions. Some think it to be an expreffion of R_{2} their their belief, concerning the fouls immortality, after its departure out of the body, a lamp amongit the Egyptians being the Hieroglyphick of life. And therefore they that could not procure fuch lamps, were yet careful to have the image and reprefentations of them ingraved on their Tombs.

Others conceive them to be by way of gratitude to thofe infernal Deities who took the charge and cuftody of their dead bodies, remaining always with them in their Tombs, and were therefore called Dii manes.

Others are of opinion, that thefe lamps were only intended to make their fepulchres more pleafant and lightfome, that they might not feem to be imprifoned in a difmal and uncomfortable place. True indeed, the dead body cannot be fenfible of the light, no more could it of its want of burial; yet the fame inftinct which did excite it to the defire of one, did alfo occafion the other.

Licetus concludes this ancient cumis f.3.c.c. 8 . ftometo have a double end: 1. Po-
litick, for the diftinction of fuch as were nobly born, in whofe Monuments culy they were ufed. 2. Na tural, to pretierve the body and foul from darknefs; for it was a conimon opinion amengit them, that the fouls alfowere much converfant about thofe places where the bodies were buried.

C A P. XII.

The moft probable conjecture bow thefo lamps were framed.

T
HE greateft difficulty of this en- शwumodo quiry doth confift in this laft fint. particular, concerning the manner how or by what poffible means any fuch perpetual flame may be contriv'd. For the difcovery of which, there are two things to be more efpecially confidered.

1. The fnuff or wiek, which muft adminifter unto the flame.
2. The oyl, which mult nourifh it.

R 3.
For

For the firt, it is generally granted that there are divers fubffances which willretain firewithoutconfuming:fuch is that Mineral which they call the. Salamanders-wool, faith our learned

- Nat.Hijf exper. 774. \dagger Lib. exper.
*De Secretis,l.3.c. 2 * Bacon. Ipfe expertus fum villos Salamandre non confumi, faith \dagger Foachinsus Fortius; and * Wecker from his own knowledg affirms the fame of Plumseallum, that being formed into the likenefs of a wiek, will adminifter to the flame, and yet not confume it felf. Of this nature likewife was that which the Ancients did call Linume
Or Linwm Cxpafium: riutarch da Oracul. defectu.

Plin. Hif. l. ig.c.s. vivum, or Asbeftinuss : of this they were wont to make garments that were not deftroyed, but purified by fire; and whereas the fpots or foulnefs of other cloaths are wafhed out, in thefe they were ufually burnt away. The bodies of the ancient Kings were wrapped in fuch garments when they were put in the funeral pile, that their alhes might be therein preferved, without the mixture of any other. The materials of them were not from any herb or vegeta- called Amiantus, which being bruifed by a hammar, and its earthy nature fhaken out, retains certain hairy fubftances, which may be fpun and woven as hemp or flax. Pliny fays, that for the precioufnefs of it, it did almoft equal the price of pearls. Pancirollus tells us, that it was, very rare, and efteemed precious in ancient

Deperd. Tit. 4. times; but now is fcarce found or known in any place, and therefore he reckons it amongft the things that are loft. But L. Vives affirms, that he hath often feen wieks made of it at Paris, and the fame matter woven into a napkin at Lovaine, which was cleanfed by being burnt in the fire.
${ }^{\prime}$ Tis probable from thefe various relations, that there was feveral forts of it, fome of a more precious, others of a bafer kind, that was found in Cyprus, the deferts of India, and a certain Province of Afia: this being common in fome parts of Ita$l v$, but is fo fhort and brittle, that it cannot be fpun intoa thred. And R 4 there-

In Auguf. de Civit.
Dei 1.2 I .
c. 6.

248 Daedalus ; or, Lib. II. therefore is useful only for the wieks

De Lapin.
ongemmis? l.2. c. 204. of perpetual lamps, faith Boetius de Boot. Some of this, or very like it, I have upon enquiry lately procured and experimented. But whether it be the ftone Asbeftus, or only Plumeallium, I cannot certainly affirm. For it lems they are both fo very like, as to be commonly fold for one annthen (faith the fame Author). However, it does truly agree in this common quality ascribed unto both, of being incombuftible, and not confumable by fire: But yet there is this inconvenience, that it doth contract fo much fuliginous matter from the earthy parts of the oyl, (though is was tryed with tome of the pureft owl, which is ordinary to be bought) that in a very few days it did chook and extinguifh the flame. There may poffibly be forme Chymical way to to purifie and defecate this oyl, that it hall not fiend into a footy matter.

However if the liquor be of a clofe and glutinous confiftency, it may burn without any fluff, as we fee

Cap. 12. Mechanical Motions.
in Camphire, and fome other bituminous fubftances. And it is probable that moft of the ancient lamps were of this kind, becaufe the exacteft relations (to my remembrance) do not mention any that have been found with fuch wieks.

But herein will confift the greateft difficulty, to find out what invention there might be for their duration. Concerning which there are fundry opinions.

Saint A :fin fpeaking of that Lamp in one of the Heathen Temples, Die c. thinks that it might either be done by Magick, the Devil thinking thereby to promote the worfhip and efteem of that Idol to which it was dedicated; or elfe that the art of man might make it of fome fuch material , as the ftone Asbeftus, which being once enkindled, will burn without being confumed. As others (faith he) have contrived as great a wonder in appearance, from the natural Zanch. de
Operibus Operibus
Dei, par.I. l. 4. C. 12. virtue of another ftone, making an iron-image feem to hang in the air, by reafon of two load-ftones, the one being placed in the Ceiling, the other in the floor.

Others are of opinion, that this may be effected in a hollow veffel, exactly luted or ftopped up in all the vents of it. And then, if a lamp be fuppofed to burn in it, but for the leaft moment of time, it muft continue fo always, or elfe there would be a Vacu$u m$, which nature is not capable of ; If you ask how it fhall be nourifhed ? it is anfwered, that the oyl of it being turned into fmoak and vapours, will again be converted into its former nature; for otherwife, if it hould remain rarefied in fo thin a fubftance, then there would not be room enough for that fume which muft fucceed it ; and fo on the other fide, there might be fome danger of the Penetration of bodies, which nature doth as much abhor. To prevent both which, as it is in the Chymical circulations, where the fame body is oftentimes turned from liquor into vapour, and from vapour into liquor again; fo be turned into fume, and that fume fhall again convert into oyl. Always provided, that this oyl which nourifhes the lamp, be fuppofed of fo clofe and tenacious a fubftance, that may flowly evaporate, and fo there will be the more leifure for nature to perfect thefe circulations. According to which contrivance, the lamp within this veffel can never fail, being always fupplied with fufficient nourifhment. That which was found in the Ine Nefis, inclofed in a glafs vial, mentioned by Baptijfa Porta, is thought to be made after fome fuch manner as this.

Others conceive it poffible to extract fuch an oyl out of fome Minerals, which fhall for a long fpace ferve to nourifh the flame of a lamp with very little or no expence of its own fubftance. To which purpofe (fay

Wolphang Laxisis.l.3. c. 18. Camb.Brit. p. 572. they) if gold be diffolved into an unCtuous humour; or if the radical moifture of that metal were feparated, it might be contrived to burn (perháps (perhaps for ever, or at leaft) for many ages together, without being confumed. For if gold it felf (as experience fhews) be fo untameable by the fire, that after many meltings, and violent heats, it does fcarce diminifh; 'tis probable then, that being diffolved into an oylie fubftance, it might for many hundred years together continue burning.
There is a little Chymical difcourfe, to prove that Urim and Thummim is to be made by art ; the Author of this Treatife affirms that place, Gen.6. 16. where God tells Noah, A windond Balt thou make in the Ark, to be very unfitly rendered in our Tranflation a window, becaufe the Original word צ fignifies properly fplendor or light; and then befides, the air being at that time fo extremely darkned with the clouds of that exceffive rain, a window could be but of very little ufe in regard of light, unlefs there were fome other help for it; from whence he conjectures that both this fplendor, and fo likewife the Urim and

Cap. 12. Mechanical Motions. a $_{\text {nd }}$ Thummim, were artificial Chymical preparations of light, anfwerable to thefe fubterraneous lamps; or in his own phrafe, it hath the univerfal fpirit fixed in a tran/parant body.

It is the opinion of Licetus (who hath more exactly fearched into the fubtilties of this enquiry) that fire does not need any humour for the nourihment of it, but only to detain it from flying upwards. For being it felf one of the chief elements (laith he out of Theophrafters) it were abfurd to think that it could not fubfift without fomething to feed it. As for that fubftance which is confumed by it, this cannot be faid to foment or preferve the fame fire, but only to generate new. For the better underftanding of this, we muft obferve, that there may be a threefold proportion betwixt fire, and the humour or matter of it. Either the humour does exceed the ftrength of the fire, or the fire does exceed the humour ; and according to boc! thefe, the flame doth prefently vanifh. Or elfe

254 Dadalus; or, Lib. II. elfe laftly, they may be both equal in their virtues, (as it is betwixt the radical moifture and natural heat in living creatures) and then neither of them can overcome or deftroy the other.

Thofe ancient lamps of fuch long duration, were of this later kind. But now, becaufe the qualities of heat or cold, drynefs or moifture in the ambient air, may alter this equality of proportion betwixt them, and make one ftronger than the other; therefore to prevent this, the Ancients did hide thefe lamps in fome caverns of the earth, or clofe monuments: And hence is it, that at the opening of thefe, the admiffion of new air unto the lamp does ufually caufe fo great an inequality betwist the flame and the oyl, that ${ }^{\text {it }}$ is prefently extinguifhed.
But ftill the greateft difficulty remains how to make any fuch exact proportion betwixt an unctuous humour, and fuch an aetive quality, as the heat of fire; or this equality being
ing made, it is yet a further difficulty how it may be preferved. To which purpofe, Licetus thinks it poffible to extract an inflameable oyl from the ftone Asbeftus, Amsiantus, or the metal Gold, which being of the fame pure and homogenious nature with thofe bodies, fhall be fo proportioned unto the heat of fire, that it cannot be confumed by it, but being once inflamed fhould continue for many ages, without any fenfible diminution.

If it be in the power of Chymiftry to perform fuch ftrange effects as are commonly experimented in that which they call aurum fulminans, one fcruple of which Shall give a louder blow, and be of greater force in defcent, than half a pound of ordinary Gunpowder in afcent; why may it not be as feafible by the fame art to extract fuch an oyl as is here enquired after: fince it muft needs be more difficult to make a fire which of its own inclination fhall tend downwards, than to contrive fuch an un-
Cfuous Ctuous liquor, wherein fire fhall be maintained for many years without any new fupply ?

Thus have I briefly fet down the relations and opinions of divers learned men concerning thefe perpetual lamps; of which, though there have been fo many fundry kinds, and feveral ways to make them, (fome being able to refift any violence of weathers, others being eafily extinguifhed by any little alteration of the air; fome being inclofed round about within glafs, others being open) ; yet now they are all of them utterly perifhed amongit the other ruines of time; and thofe who are moft verfed in the fearch after them, have only recovered fuch dark conjectures, from which a man cannot clearly reduce any evident principle that may encourage him to a particular trial.

Cap: İ. Mechanical Motions.

C A P. XIII.

Concerning feveral attempts of contris ving a perpetual motion by Magnetical virtues.

TH E feconid way whereby the making of a perpetual motion hath been attempted, is by Magnetical virtues ; which are not without fome ftrong probabilities of proving effectual to this purpofe: efpecially when we confider, that the heavenly revolutions, (being as the firft pattern imitated and aimed at in thefe attempts) are all of them performed by the help of there qualities. This great Orb of earth, and all the other Planets being but as fo many Magnetical Globes endowed with fuch various and continual motions, as may be moft agreable to the purpoles for which they were intended. And therefore molt of the Authors who treat concerning this invention, do agree, that the likelieft way to ef fect it, is by thefe kind of qualities.

S

258 Dedalus; or; Lib. II.

It was the opinion of Pet. Peregrinus,

Gilbert. de Miggret.
Caluess photio.
Magnet.
l. 4. 6. 20. and there is an example pretended for it in Bettinus) Apiar. 9. Progym. 5.pro. in). That a Magnetical Globe or Terella, being rightly placed upon its poles, would of it felf have a conftant rotation, like the diurnal motion of the earth. But this is commonly exploded, as being againtt all experience.

Others think it poffible, fo to contrive feveral pieces of fteel, and a loaditone, that by their continual attraction and expulfion of one another, they may caufe a perpetual revolution of a wheel; Of this opinion were ${ }^{a}$ Taifner, ${ }^{b}$ Pet. Peregrinus, and Cardan, out of Antonius de Fantis. riBur D. Gilbert, who was more elpecially verled in Magnetical experiments, concludes it to be a vain and groundlefs fancy.

But amongft all thefe kind of inventions, cthat is moft likely, wherein a loaditone is fo difpofed, that it fhall draw: unto it on a reclined plane, a bullet of Iteel; which fteel, as it afcends

Cap. 13. Mechanical Motions.
fcends near to the loadtone, may be contrived to fall down through fome hole in the plane, and fo to return unto the place from whence at firt it began to move; and being there, the loadfone will again attract it upwards, till coming to this hole, it will fall down again: and fot the motion will be perpetual, as may be more eafily conceivable by this figure.

Suppofe the loadftone to be reprefented at $A B$, which though it have not ftrength enough to attract the bullet c, directly from the ground, yet may do it by the help of the plane $E F$. Now when the bullet is come to the top of this plane, its own gravity (which is fuppofed to exceed the ftrength of the loadfione) will make it fall into that hole at E : and the force it receives in this fall, will carry. it with fuch a violence unto the other end of this arch, that it will open the paffage which is there made for it, and by its return will again fhut it ; fothat the bullet (as at the firft) is in the fame place whence it was attracted, and confequently muft move perpetually.

But however this invention may feem to be of fuch ftrong probability, yet there are fundry particulars which may prove it infufficient. For,

1. This bullet of fteel muit fiff be touched and have its feveral poles, or elfe there can be little or no attraction of it. Suppofe C in the fteel

Cap.13. Mechanical Motions: 261

to be anfwerable unto A in the ftone, and to B; In the attraction, $C D$ muft always be directed anfwerable to $A B$, and fo the motion will be more difficult, by reafon there can be no rotation or turning ronnd of the bullet, but it muft flide up with the line $C D$, anfwerable to the axis $A B$.
2. In its fall from E to G, which is motus elemsentaris, and proceeds from its gravity, there mult needs be a rotation of it, and fo 'tis odds but it happens wrong in the rife, the poles in the bullet being not in the fame direction to thofe in the magnet ; and if in this reflux it fhould fo fall out, that D fhould be directed towards B_{1} there fhould be rather a flight than an attraction, fince thofe two ends do repell. and not draw one another.
3. If the loaditone $A B$, have fo much ftrength that it can attract the bullet in F, when it is not turned round, but does only glide upon the plane, whereas its own gravity would soul it downwards: then it is evident, the fohere of this activity and flrength would be fo increafed when it approaches much nearer, that it would not need the affiftance of the plane, but would draw it immediately to it feN without that help, and fo the bullet would not fall down through the hole, but afcend to the ftone, and confequently ceafe its motion. For it the loadtone be of force enough to draw the bullet on the plane, at the diftance $F B$, then mult the ftrength of it be fufficient to attract it immediately unto it felf, when it is fo much nearer as E B. And if the gravity of the bullet be fuppofed fo much to exceed the ftrength of the Magnet, that it cannot draw it directly when it is fo near, then will it not be able to attract the bullet up the plane, when it is fo much further off.

So that none of all thefe Magnetical experiments, which have been as yet difcovered, are fufficient for the effecting of a perpetual motion, though thefe kind of qualities feem moft conducible unto it, and per-

Cap. 1 4. Mecbanical Motions.

haps hereafter it-may be contrived from them.

CAP. XIV.

The feeming probabiiity of efftcting a continual motion by folid weights in a bollow wheel or Sphere.

T
HE third way whereby the making a perpetual motion hath been attempted, is by the natural affection of gravity; when the heavinefs of feveral bodies is fo contrived, that the fame motion which they give in their defcent, may be able to carry them up again.

But amongt the poffibility of any fuch invention, it is thus objected by Cardan; All fublunary bodies have a direct motion either of alcent or defcent; which, becaufe it does refer to fome term, therefore cannot be perpetual, but muft needs ceafe when it is arrived at the place unto. which it naturally tends.

I anfwer, Though this may prove S_{4} that

Dedalus ; or, Lib. II. that there is no natural motion of any particular heavy body, which is perpetual; yet it doth not hinder but that it is polible from them to contrive fuch an artificial revolution as fhall conftantly be the caufe of it felf.

Thofe bodies which may be ferviceable to this purpofe, are diftinguifhable into two kinds.
I. Solid and confiftent, as weights of metal or the like.
2. Fluid or fliding, as water, fand, \&c.

Both thefe ways have been attem: pted by many, though with very litQ.Flud. tle or no fuccefs. Other mens conTrati. 2. part $7 . l .2$. C. 4.67. jectures in this kind you may fee fet down by divers Authors. It would be too tedious to repeat them over, or fet forth their draughts. I fhall only mention two new ones, which (if I am not over partial) feem altogether as probable as any of thefe kinds that have been yet invented; and till experience had difcovered their defect and infufficiency, I did certainly tion. For (as the Philofopher hath largely proved) only a circular motion can properly be perpetual.

But for the better conceiving of this invention, it is requifite that we rightly underftand fome principles in Trochilicks, or the Art of Wheel-inftruments: As chiefly, the relation betwixt the parts of a wheel, and thofe of a Ballance; the feveral proportions in the Semidiameter of a wheel being anfwerable to the fides in a Ballance, where the weight is multiplied according to its diftance from the cen-

Arif.Mechan.c. 3. De rations libra ad circulues. ter.

Thus

266:. Dedalus; or, Lib. II.

Thus fuppofe the center to be at A, and the Diameter of the wheel $B C$, to be divided into equal parts (as is here expreffed) it is evident according to the former ground, that: one pound at C, will be equiponderate to five pound at B, becaufe there is fuch a proportion betwixt their for veral diftances from the Center. And it is net material whether or no thefe feveral weights be placed horizontally; for though B do hang lower than

Cap. 14. Mechanical Motions.

than C, yet this does not at all concern the heavinefs; or though the plummet C were placed much higher than it is at E, or lower at F, yet would it ftill retain the fame weight which it had at C, becaufe the plummets (as is the narure of all heavy bodies) do tend downwards by a ftraight line: So that their feveral gravities are to be meafured by that part of the horizontal Semidiameter which is directly either below or above them. Thus when the plummet C, fhall be moved either to G or H, it will lofe $\frac{2}{3}$ of its former heavinefs, and be equally ponderous as if it were placed in the ballance at the number 3 ; and if we fuppofe it to be fituated at I or K, then the weight of it will lie wholly apon the Center, and not at all conduce to the motion of the wheel 'on either fide. So that the ftraight lines which pafs' through the divifions of the diameter, may ferve to meafure the heavinefs of any weight in its feveral fituations.

Thefe things throughly confidered, it feems very poffible and eafie for a man to contrive the plummets of a wheel, that they may be always heavier in their fall, than in their afcent, and fo confequently that they fhould give a perpetual motion to the wheel it felf: Since it is impoffible for that to remain unmoved, as long as one fide in it is heavier than the other.

For the performance of this, the weights mult be fo ordered, r. That in their defcent they may fall from the Center, and in their afcent may rife nearer to it. 2. That the fall of each plummet may begin the motion of that which fhould fucceed it. As in this following Diagram.

Where

Cap. 14 . Mechanical Motions.

Where there are 16 plummets, 8 in the inward circle, and as many in the outward, (the equality being to arife from their fituation, it is therefore molt convenient that the number of them be even). The eight inward plummets are fuppofed to be in themfelves fo much heavier than the other, that in the wheel they may be of equal weight with there above them, and then the fall of there will be of fufficient force to bring outward be each of them 4 ounces, then the inward mult be 5 , becaufe the out ward is diftant from the center ζ of thofe parts, whereof the inward is but 4. Each pair of thefe weights fhould be joyned together by a little ftring or chain, which muft be faftrted about the middle betwixt the bullet and the center of that plummet, which is to fall firft, and at the top of the other.

When thefe bullets in their defcent are at their fartheft diftance from the center of the wheel, then Shall they be ftopped, and reft on the pins placed to that purpofe; and fo in their rifing there muft be other pins to keep them in a convenient polture and diftance from the center, left ap. proaching too near unto it, they thereby become unfit to fall, when they fhall come to the top of the defcending fide.

This may be otherwife contrived with fome different circumftances; but they will all redound to the fame effect. effect. By fuch an engine it feems very probable, that a man may pro. duce a perpetual motion. The diftance of the plummets from the center increafing their weight on one fide;; and their being tyed to one another, caufing a conftant fucceffion in their falling.

But now, upon experience I have found this to be fallacious; and the reafon may fufficiently appear by a calculation of the heavinefs of each plummet, according to its feveral ci tuations; which may eafily be done by thofe perpendiculars that cut the diameter, (as was before explained, and is here expreffed in five of the plum. mets on the defcending fide). From fuch a calculation it will be evident, that both the fides of this wheel will equiponderate, and fo confequently that the fuppofed inequality, whence the motion fhould proceed, is but imaginary and groundlefs. On the defcending fide, the heavinefs of each plummet may be meafured according to thefe numbers, (fuppofing the diameter
$27^{2} \quad \therefore$ Dadalus; oŕ, Lib. II. ameter of the wheel to be divided into twenty parts, and each of thofe fubs divided into four).

\therefore On the afcending fide the weights are to be reckoned according to thefe degrees,

The outward.

The inward.

$$
\left\{\begin{array}{ll}
4 & 1 \\
7 & 0 \\
5 & 2 \\
2 & 1 \\
&
\end{array}\right\} \text { The fum }
$$

The fum of which laft numbers is equal with the former, and therefore both the fides of fuch a wheel, in this fituation will equiponderate.

Cap. $14 \times$ Mechanical Motions.
If it be opbected , That the plummet A fhould be contrived to pull down the other at B, and then the defcending lide will be heavier than the other.
For anfwer to this, it is confiderable,

1. That thefe bullets towards the top of the wheel, cannot defcend till they come to a certain kind of incli--nation.
2. 2. That any lower bullet hanging upon the other' above it, to puill it down, nult be conceived, as if the weight of it were in that point where its ftring touchesthe upper; at which point this bullet will be of lefs heavinefs in refpeet of the wheel,' than if it did reft in itsown place : Sothati both the fides of ititiony kind of fituation may equipondeate.

$$
\mathbf{T} \quad \mathbf{C A P} .
$$

CAP. XV.

Of compofing a perpetual:motion by fanid weights. Concerning Archimedes bis water-fcrew. The great probability of Aciomplijbing this enquiry by the belp of that ; with the fallibleness of it upgo experiment.

1 Hat which I hall mention as the
latt way, for the trial of this θ periment, is by conttiving it in fome water-inftrument x : which pray feem altogether as probable and eafie ns any of the reft, becaufe that element by reafon of its fluid and fubtil mature (whereby of its own accord it fearches out the lower and more narrow paflages) may be moft pliable to the mind of the Artificer, Now the ulual meansfor the alcent of water, is either by Suckers or Forcers, of fomething equivalent thereunto; Neither of which may be conveniently applied unto fuch a work asthis, becaule there is required unto each of them fo much or more frength, as may be adwera-

Cap. 1 5: Mechanical Motions.

ble to the full weights of the water that is to be drawn up; and then befides, they move for the molt part by fits and fnatches, fo that it is not eafily conceivable, how they hould conduce unto fuch a motion, which by reafon of its perpetuity muft be regular and equal.

But amongft all other ways to this purpofe, that invention of Archimedes is incomparably the beft, which is ufually called cochlea, or the Waterfarew, being framed by the Helical revolution of a cavity about the Cy linder. We have not any difcourfe. from the Author himfelf concerning it, nor is it certain whether he ever writany thing to this purpofe. But if he did, yet as the injury of time hath deprived us of many other his excellent works, fo likewife of this, amongft the reft.

Athewaus fpeaking of that great hip Dipnoferj. built by Hiero, in the framing of 6.5 : which there were 300 Carpenters employed for a year together, befides many other birelings for carriages, and fuch fervile works, mentions this inftrument, as being inftead of a pump for that vaft Chip; by the help of which, one man might eafily and fpeedily drain out the water, thourg it were very deep.

Biblioth:
l. I.

Diodorus Sicutus fpeaking: of this engine, tells us, that Archimedes invented it when he was in Egypt, and that it was ufed in that Country for the draining thofe pits and lower grounds, whence the waters of Nilus could not return. कrtoríxus
 the fame Author). It being an engine fo

Cardarn. Subt.l. I. De fapient. l. 5 . iagenious and artificial, as cannot be fufficiently expreffed or commended, And fo (it flould feem) the Smith in Millain conceived it to be, who having without any teaching or information found it out, and therefore thinking himfelf to be the firft inventor, fell mad with the meer joy of it.

The nature and manner of making Architelt. L. 10.c. 11. this, is more largely handled by $V_{i}=$ truvius.

The

Cap.15. Mechanical Motions.'

 The Figure of it is after this manner,

Where you fee there is a Cylinder $A . A$, and a Spiral cavity or pipe twining about it,according to equal revolutions $B B$. The axis and centers of its motions are at the points $C D$, upon which being turned, it will fo happen that the fame part of the pipe which was now lowermoft, will prefently bocome trigher, fo that the water does afcend by defoending; afcending in comparifon to the whole inftrumeat, and defcending in refpect of its feveral parts. . This being one of the ftrangeft wonders amongt thofe many, wherein thefe Mathematical arts do abound, that a heavy body hould rife by falling down; and the farther it paffes by its own natural motion of defcent, by fomuch higher ftill hall it afcend; which though it feem fo evidently to contradict all reafon and Philofophy; yet in this inftrument it may be manifefted both by demonftration and fenfe.

This pipe or cavity for the matter of it, cannot eafily be made of metal, by reafon of its often turnings; but for trial, there might be fuch a cavity, cut in a column of wood, and afterwards covered over with tin plate.

For the form and manner of making this fcrew, Vitruvius does prefribe thefe two rules:

1. That there muft be an equality obferved betwixt the breadth of the pipe, and the diftance of its fe veral circumvolutions.
2. That there muft be fuch a praportion

Cap. 1 5. Mectanical Motions. 279° portion betwixt the length of the infltrument, and its elevation, as is anifiwerable to the Pythagorical Trigon?.' David RiIf the Hypotenuffal, or Screw be sithe valt. con. perpendicular or elevation mut be ${ }^{i n}$ in Archim. perpendicular or elevation mult be 3 , qpras. ixand the balig 4.:
However (with hisleave) neither of thefe proportions are generally neceffary, but 乌hould be varied according to other circumftances. As for the breadeh of the pipe in refpect of its revolutions; it is left at liberty, and may be contrived according to the quantity of water which it fhould contain. The chief thing to be confidered is the obliquity or clofenefs of thefe circumvolutions. For the nearer they are unto one another, the higher may the inftrument be erected ; there being no other guide for its true elevation. but this.

And becaufe the right underftanding of this particular is one of the principal matters that concern the ufe of this engine, therefore I fhall endeavour with brevity and perfpiculty to explain it. The firft thing inclination thefe Helicad revolutions: of the Cylinder haye unto the Horizon; which may be thus found out.

Let $A B$ reprefent a Cylinder with; - two perfect revolutions in it; unto which Cylinder the perpendicular line $C D$ is equal : the bafis $D E$ being fuppofed to be double unto the compals or circumference of the Cylinder Now it is certain that the angle $C E D$, is the fame with than by which the revolutions on the $C y$ linder are framed ; and that the line $E C$ in comparifon to the bafis $E D$, does fhew the inclination of thele. revolutions unta the Horizon. The ground and demonftration of this, are more fully fet down by Guidus Whatdus, in his Mechanicks, and that other writ purpofely for the explication of : this inftrument, where the fubtidties. of it are largely and excellently handled.

Now if this Screw which was before perpendicular, be fuppofed to decline unto the Horizon by the angle FBG, as in this fecond Figure;

then the inclination of the revolutions in it, will be increafed by the angle ED H, though thefe revolutions will ftill remain in a kind of afcent, fo that water cannot be turned through them.

282 Dédalus; or, Lib. II.

But now if the Screw be placed fo far declining; that the angle of its inclination $F B G$, be lefs than the angle $E C D$, in the triangle, as in this other Diagram under the former; then the revolutions of it will defcend to the Horizon, as does the line ECC, and in fuch a pofture, if the Screw be turned round, water will afcend through its cavity. . Whence it is eafie to coinceive the certain declination whereinany Screw mult be placed for its own conveyance of water upwards. Any point betwixt H and D, being in defcent ; but yet the more the Screw declines downwards towards D, by fo much the more water will be carried up by it.
If you would know the juft quantityof water which every revolution does contain and carry, according to any inclination of the Cylinder, this may be eafily found by afcribing on itan Etlipfis, parallelto the Horizon ; which Ellipfis will hew how much of the revolution is empty; and how much full.

The

Cap. 15. Mechanical Motions?

The true inclination of the Screw being found, together with the certain quantity of water which every Helix does contain ; it is further confiderable, that the water by this Inftrument does afcend naturally of it felf without any violence or labour, and that the heavinefs of it doth lie chiefly upon the centers or axis of the Cylinder, both its fides being of equal weight (faith Vbaldus); So that lidi. . . 3 . (it fhould feem) though we fuppofe ${ }^{\text {rop }} 4$ each revolution to have an equal quantity of water, yet the Screw will remain with any part upwards (according as it fhall be fet) without turning it felf either way. And therefore the leaft ftrength being added to either of its fides, fhould make it defcend, according to that common Maxime of Archimedes; any addition will make that which equiponderates with another, to tend down- $p \cdot \frac{3}{3}$. wards.

But now, becaufe the weight of this inftrument, and the water in it, does lean wholly upon the axis, hence grating and rubbing of thefe axesagaint the fockets wherein they are placod, will caure fome ineptitude and refiftency to that rotation of the Cy linder, which would otherwife enfue upon the addition of the leaft weight tio any one fide; But (faith the fame Author) apy power that is greater than this refifency which does arife from the axis, will ferve for the turning of it reund.

Thefethings confidered nagether, it will hence appear, how a perpetual motion may feem eaflly contrivable, For if there were bat fuch a waterwheelimade on chis inftroment, upon which the ftream that is carnied up, may fall, in its defoent it would turn the forew round, and by that means convey asmuch water up, as is required to move it; fo that the motion mout neads be concimuad, fince the fame weight which in its fall does turn the wheel, is by the turaing of the wheel orrried up again.

Or if the water falling upon one wheel;

Capirs. Meebanical Motions. 285 wheel, would not be forcible enough for this effect, why then there might be two or three, or more, according as the length and elevation of the inflrument will admit; By which means the weight of it may be fo multiplied in the fall, that it thall be equivalent to twice or thrice that quantity of water which afcends. As may be more plainly difcerned by this following Diagram.

Where

296
 Dedalus; or, Lib, ILe

Where the figure $E M$, at the bottome does reprefent a wooden Cylinder with Helical cavities cut in it, whichiat $A B$, is fuppofed to be coyered oper with tin plates, and three : water wheels upon ity' $H I K$. The lower ciftern which contains the water being $C D$. Now this Cylinder being turned round, all the water which from the cifternafeends thro' it, will fall into the veffel at E, and from that veffel being conveyed upon the water-wheet H, fhall confequently give a circular motion to the whole Screw : Or if this alone fhould be too weak for the tursing of it, then the fame water which falls from the wheel H, being received into the other veffel F, may from thence again defcend on the wheel I; by which means the force of it will be doubled. And if this be yet infufficient, then may the water which falls on the fecond wheel I, be received into the other veffel

There is another like contrivance to this puxpofe in Pet.Bettin. Apiar. 4. Prggym.1: Prop. 10. but with much lefs advantage than 'tis here propofed. G, and from thence again defcend on the third wheel at K : and fo for as

288 Dadilus; or; Lib.H:

 many other wheels; as the inftrument is capable of: So that befides the greater diftance of thefe three ftreams from the center or axis, by which they :are made fo much heavier ; and befides, that the fall of this outward water is forcible and violent, whereas the afcent of that within, is natural ; Befides all this, there is thrice as much water to turn'the Screw, as is carried up by it.But on the other fide, if all the water failing upor one wheel, would be able to turn it yound, then half of it would ferve with two wheels; and the reft may be fo difpofed of in the fall, as to ferve unto fome other ufeful delightfulends.

When I firft thought of this invention, I could fcarce forbear with Archimedes to cry out \%upnre Evpure, ; It feeming fo infallible a way for the effecting of a perpetual motion, that nothing could be fo much as probably objected againft it:'But upon trial and experience I find it altogether infufficient for any fuch purpore

Cap. 1 5. Mecbanical Motions.:

 purpofe, and that for thefe two reafons:1. The water that afcends, will not make any confiderable ftream in the fall.
2. This fream (though multiplied) will not be of force enough to turn about the Screw.
3. The water afcends gently, and by intermiffions, but it falls continuately, and with force; each of the three veffels being fuppofed full at the firft, that fo the weight of the water in them might add the greater ftrength and fwiftnefs to the ftreams that defcend from them. Now this fwifnefs of motion will caufe fo great a difference betwixt them, that one of thefe little ftreams may . Peend more water in the fall, than a ftream fix times bigger in the afcent, though we fhould fuppofe both of them to be continuate; How much more then, when as the afcending water is vented by fits and intermiffions, every circumvolation voiding only fo much as is con- tained in one Helix ? And in this particular, one that is not verfed in thefe kind of experiments, may be eafily deceived.

But fecondly, though there were fogreat a difproportion, yet notwithftanding the force of thefe outward ftreams might well enough ferve for the turning of the Screw, if it were fo that both its fides would equiponderate, the water being in them (as Wbaldus hath affirmed). But now upon farther examination, we fhall find this affertion of his, to be utterly againft both reafon and experience. And herein does confift the chief 'miftake of this contrivance. For the afcending fide of the Screw is made by the water contained in it,fo much heavier than the defcending fide, that thefe out ward ftreams thus applied, will not be of force enough to make them equiponderate, much lefs to move the whole. As may be more eafily difcerned by this figure.

Cap.15. Mechanical Motions.

Where $A B$, reprefents a Screw covered over, C D E one Helix or revolution of it, $C D$ the afcending fide, $E D$ the defcending fide, the point D the middle. The Horizon. tal line $C F$, fhewing how much of the Helix is filled with water, viz. of the afcending fide, from C the beginning of the Helix, to D the middle of it ; and on the defcending fide, from D the middle, to the point G, where the Horizontal does cut the Helix. Now it is evident, that this latter part D G, is nothing near fo_{0} much, and confequently not fo heavy as the other D C. And thus is it in all the other revolutions, which as they are either more, or larger, fo Y. 2 will increafed. Whence it will appear, that the outward freams which defcend, mult be of fo much force as to countervail all that weight whereby the afcending fide in every ode of thefe revolutions does exceed the other; And though this may be effected by making the water-wheels larger; yet then the motion will be fo low, that the Screw will not be able to fupply the outward ftreams.

There is another contrivance: to this purpofe mentioned by Kircher de Magnete, l. 2.p. 4. depending upon the heat of the Sun, and the force of winds ; but it is liable to fuch abundance of exceptions, that it is fcarce worth the mentioning, and does by no means deferve the confidence of any ingenious Artift.

Thus have I briefly explained the probabilities and defects of thofe fubtil contrivances, whereby the making of a perpetual motion hath been attempted. I would be loth to difcourage the enquiry of any ingenious Artificer, to the greatnefs of the weight, were rightly underttood, and throughly confidered, they would make this experiment to feem (if not altogether impoffible, yet) much more difficult than otherwife perhaps it will appear. However, the inquiring after it, cannot but deferve our endeavours, as being one of the moft noble amongft all thele Mechanical fubtilties. And (as it is in the fable of him who dug the Vineyard for a hid treafure, though he did not find the money, yet he thereby made the ground more fruitful ; fo) though we do not attain to the effecting of this particular, yet our fearching after it may difcover fo many other excellent fubtilties, as fhall abundancly recompence the labour of our enquiry.

And then befides, it may be another encouragement to confider the pleafure pleafure of fuch fpeculations, which do ravilh and fublime the thoughts with more clear Angelical contentments. Arcbimedes was generally fo taken up in the delight of thefe Mathematical ftudies of this familiar
inctias xis curoíx बерйン Θ Plutarch Easrcell. Joan. Tretzes, Cbil. Hiff. 35: Valer. Maxims. 1. 8.c. 7. Siren, (as Plutarch ftiles them) that he forgot both his meat and drink, and other neceffities of nature; nay, that he neglected the faving of his life, when that rude foldier in the pride and hafte of victory, would not give him leafure to finifh his demonftration. What a ravifhment was that, when having found out the way to meafure Hiero's Crown, he leaped out of the Bath, and (as if he were fuddenly poffeft) ran naked up and down, crying Ěupnue Ezupnex! It is ftoried of Thales, that in his joy and gratitude for one of thefe Mathematical inventions, he went prefently to the Temple, and there offered up a folemn facrifice. And Pythagoras upon the like occafion is related to have facrificed a hundred Oxen. The juftice of providence ha, ving

Cap. 15. Mechanical Motions. ving fo contrived it, that the pleafure 295 which there is in the fuccefs of fuch inventions, fhould be proportioned to the great difficulty and labour of their inquiry.

FINIS.

$\therefore=$ B O O KS lately Printed for

 Richidrd:Balduzin.Ruith brought to light by Time ; or the mof t remarkable Tranaactions of the firft fourteenYears of King Jamess Reign. The fecond Edition, with Additions.

A New, Plain, Short, and Compleat French and Englifh Grammer ; whereby the Learned may attain in few Month's to Speak and'Write French Correctly, as they do nom in the Court of France. And whereing all that is Dark, Superfuous, and Deficient in other Grammers, is Plain, Short, and Methodically fupplied. Allo very ufffull to Strangers, that are defrous to learn the Englifh Tongue: Forwhofe Jake is added a Short, but very Exact Englifh Grammer. The Second Edition. By Peter Berault.

The Devout Chriftian's Preparation

 for holy Dring. Confifing of Ejaculations, Prayers, Meditations and Hymus, adapted to the feveral States and Conditions of this Life. And on the four laft Things, Viz. Death, Judgment, Heaven, and Hell.